• ISSN 1673-5722
  • CN 11-5429/P

地震作用下承台桩-土动力相互作用数值模拟分析

董安鑫 豆鹏飞 许成顺 张梓鸿 杨钰荣

董安鑫,豆鹏飞,许成顺,张梓鸿,杨钰荣,2023. 地震作用下承台桩-土动力相互作用数值模拟分析. 震灾防御技术,18(2):347−360. doi:10.11899/zzfy20230216. doi: 10.11899/zzfy20230216
引用本文: 董安鑫,豆鹏飞,许成顺,张梓鸿,杨钰荣,2023. 地震作用下承台桩-土动力相互作用数值模拟分析. 震灾防御技术,18(2):347−360. doi:10.11899/zzfy20230216. doi: 10.11899/zzfy20230216
Dong Anxin, Dou Pengfei, Xu Chengshun, Zhang Zihong, Yang Yurong. Numerical Simulation of Dynamic Interaction Analysis of Cap Pile-soil under Earthquake Action[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 347-360. doi: 10.11899/zzfy20230216
Citation: Dong Anxin, Dou Pengfei, Xu Chengshun, Zhang Zihong, Yang Yurong. Numerical Simulation of Dynamic Interaction Analysis of Cap Pile-soil under Earthquake Action[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 347-360. doi: 10.11899/zzfy20230216

地震作用下承台桩-土动力相互作用数值模拟分析

doi: 10.11899/zzfy20230216
基金项目: 国家自然科学基金优秀青年基金(51722801)
详细信息
    作者简介:

    董安鑫,男,生于1994年。硕士。主要从事桩-土相互作用、岩土地震工程方面研究。E-mail:736270289@qq.com

    通讯作者:

    许成顺,女,生于1977年。博士后,教授,博士生导师。主要从事土动力学、岩土地震工程方面研究。E-mail:xuchengshun@bjut.edu.cn

Numerical Simulation of Dynamic Interaction Analysis of Cap Pile-soil under Earthquake Action

  • 摘要: 基于已开展的非液化场地-群桩基础-结构体系动力响应大型振动台模型试验,进行三维全时程动力数值模拟分析。采用修正的Davidenkov模型反映土体在地震反应过程中的模量衰减,通过“捆绑边界”模拟模型箱的层状剪切运动。通过对比试验中土-结构体系加速度响应时程、土体位移和桩基内力等,验证数值模型的有效性。利用已验证的数值模型,开展承台尺寸对桩-土-上部结构动力响应影响研究。结果表明,承台厚度的增大会导致上部结构和桩顶惯性效应减小;地震作用下沿激振方向前桩大于后桩,随着承台厚度的增大,前桩与后桩峰值弯矩差值率为16.1%~32.1%,群桩效应影响增大;随着承台厚度的增大,承台-土动土压力增大了3~6倍,承台与桩基水平荷载分担比增大,桩基弯矩反弯点位置上移了0.50 m;承台-土的相互摩擦作用会降低结构整体动力响应。
  • 图  1  非液化非自由场振动台试验传感器布置

    Figure  1.  Non-liquefaction non-free field shaking table test sensor layout

    图  2  汶川地震卧龙台地震记录加速度时程曲线与傅里叶谱

    Figure  2.  Acceleration time history and Fourier spectra of Wenchuan earthquake recorded by Wolong station

    图  3  不同时刻土体对桩的侧向约束力分布示意

    Figure  3.  Distribution diagram of lateral binding force of soil on pile at different time

    图  4  非液化非自由场三维计算模型

    Figure  4.  Non-liquefaction free-field three-dimensional calculation model

    图  5  三维计算模型输入加速度时程曲线

    Figure  5.  Input acceleration time-history for three-dimensional calculation model

    图  6  Davidenkov模型应力-应变滞回曲线

    Figure  6.  Dynamic shear stress-strain hysteresis curves of Davidenkov model

    图  7  振动台试验砂土Davidenkov拟合曲线

    Figure  7.  Davidenkov fitting curve of sandy soil for shaking table test

    图  8  桩内土体加速度时程曲线对比

    Figure  8.  Comparison of acceleration time-history curves of soil in piles

    图  9  远场土体加速度时程曲线对比

    Figure  9.  Comparison of acceleration time-history curve of soil in far field

    图  10  远场土体加速度放大系数对比

    Figure  10.  Comparison of acceleration amplification factor of soil in far field

    图  11  桩基-结构加速度时程曲线对比

    Figure  11.  Comparison of acceleration time-history curves of pile-structure

    图  12  不同测点加速度反应谱对比

    Figure  12.  Comparison of acceleration response spectra with different test points

    图  13  远场土体位移峰值对比

    Figure  13.  Comparison of soil peak displacement

    图  14  桩基正负弯矩峰值对比

    Figure  14.  Comparison of peak bending momentof pile foundation

    图  15  模型输入加速度时程曲线

    Figure  15.  Model input acceleration time history curve

    图  16  不同承台厚度结构加速度时程曲线对比

    Figure  16.  Comparison of acceleration time-history curves of structure with different thickness of cap

    图  17  不同承台厚度结构位移时程曲线对比

    Figure  17.  Comparison of structural displacement time history with different thickness of cap

    图  18  不同承台厚度桩基-结构最大时刻位移

    Figure  18.  Maximum time displacement of pile foundation and structure with different thickness of cap

    图  19  不同承台厚度桩身最大时刻剪力

    Figure  19.  Maximum instantaneous shear force of pile body with different thickness of cap

    图  20  不同厚度承台-土接触动土压力

    Figure  20.  Different thickness cap-soil contact earth pressure

    图  21  不同承台厚度桩基最大时刻弯矩

    Figure  21.  Maximum moment bending moment of pile with different thickness of cap

    图  22  不同承台厚度土体对桩的侧向约束力分布示意

    Figure  22.  Distribution diagram of lateral binding force of soil with different thickness of cap on pile

    表  1  模型材料参数

    Table  1.   Physical parameters of model


    土层编号

    土层厚度/m

    密度ρ/(kg·m−3
    Davidenkov模型参数
    最大剪切模量Gmax/MPa泊松比νABγ0γult剪切波速vs/(m·s−1
    10.21 400170.351.020.350.000 400.003110
    21.21 460250.301.100.450.000 450.003130
    30.51 600400.301.100.450.000 450.003158
    下载: 导出CSV

    表  2  结构模型材料参数

    Table  2.   Physical parameters of model

    材料弹性模量/GPa密度ρ泊松比阻尼比峰值抗压强度/MPa峰值抗拉强度/MPa
    混凝土142 4000.200.0529.62.95
    钢筋/H型钢2007 8000.18240.0240.00
    下载: 导出CSV

    表  3  模型结构动力响应对比

    Table  3.   Comparison of dynamic responses of model structures

    动力响应计算值0.25 m厚承台0.50 m厚承台0.75 m厚承台
    有摩擦无摩擦有摩擦无摩擦有摩擦无摩擦
    承台加速度峰值/g3.503.462.913.062.462.51
    承台位移峰值/mm16.4016.6111.3012.5211.2611.3
    上部结构顶部加速度峰值/g1.641.741.481.671.361.58
    上部结构顶部位移峰值/mm7.7107.8505.6906.9403.6824.470
    桩1弯矩峰值/(N·m)191.30201.60198.30206.80211.80213.30
    桩1剪力峰值/N393.30411.90582.60604.70783.40788.70
    下载: 导出CSV
  • 陈国兴, 庄海洋, 2005. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究. 岩土工程学报, 27(8): 860—864 doi: 10.3321/j.issn:1000-4548.2005.08.002

    Chen G. X. , Zhuang H. Y. , 2005. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve. Chinese Journal of Geotechnical Engineering, 27(8): 860—864. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.002
    陈跃庆, 吕西林, 李培振等, 2001. 分层土-基础-高层框架结构相互作用体系振动台模型试验研究. 地震工程与工程振动, 21(3): 104—112 doi: 10.3969/j.issn.1000-1301.2001.03.019

    Chen Y. Q. , Lü X. L. , Li P. Z. , et al. , 2001. Shaking table testing for layered soil-foundation-structure interaction system. Earthquake Engineering and Engineering Vibration, 21(3): 104—112. (in Chinese) doi: 10.3969/j.issn.1000-1301.2001.03.019
    邸博, 2017. 考虑有限基础刚度的高层建筑结构性能研究与应用. 哈尔滨: 哈尔滨工业大学.

    Di B., 2017. Structural performance study and application of high-rise buildings considering foundation stiffness. Harbin: Harbin Institute of Technology. (in Chinese)
    范重, 刘涛, 陈巍等, 2017. 基础刚度对高层建筑抗震性能影响研究. 工程力学, 34(7): 203—213 doi: 10.6052/j.issn.1000-4750.2016.08.0650

    Fan Z. , Liu T. , Chen W. , et al. , 2017. Study on the influence of foundation stiffness on the seismic performance of high-rise buildings. Engineering Mechanics, 34(7): 203—213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0650
    尚守平, 卢华喜, 王海东等, 2006. 大比例模型结构-桩-土动力相互作用试验研究与理论分析. 工程力学, 23(S2): 155—166

    Shang S. P. , Lu H. X. , Wang H. D. , et al. , 2006. Test investigation and theoretical analysis of large-scale model on dynamic soil-pile-structure interaction. Engineering Mechanics, 23(S2): 155—166. (in Chinese)
    唐亮, 凌贤长, 徐鹏举等, 2010. 承台型式对可液化场地桥梁桩-柱墩地震响应影响振动台试验. 地震工程与工程振动, 30(1): 155—160

    Tang L. , Ling X. Z. , Xu P. J. , et al. , 2010. Effect of cap type on seismic responses of bridge pile-column pier in liquefiable ground by shaking table test. Journal of Earthquake Engineering and Engineering Vibration, 30(1): 155—160. (in Chinese)
    肖晓春, 2003. 地震作用下土-桩-结构动力相互作用的数值模拟. 大连: 大连理工大学.

    Xiao X. C., 2003. Numerical modeling of soil-pile-structure dynamic interaction under seismic excitation. Dalian: Dalian University of Technology. (in Chinese)
    许成顺, 豆鹏飞, 杜修力等, 2022. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究. 建筑结构学报, 43(5): 185—194, 204 doi: 10.14006/j.jzjgxb.2020.0260

    Xu C. X. , Dou P. F. , Du X. L. , et al. , 2022. Dynamic interaction and seismic response of non-liquefiable soil-pile group foundation-structure system from shaking table test. Journal of Building Structures, 43(5): 185—194, 204. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0260
    赵晓光, 2020. 地震作用下建筑高低承台群桩基础响应规律试验研究. 北京: 中国建筑科学研究院.

    Zhao X. G., 2020. Experimental research on response law of pile group foundation with high and low cap under earthquake action. Beijing: China Academy of Building Research. (in Chinese)
    中华人民共和国交通运输部, 2012. JTS 146—2012 水运工程抗震设计规范. 北京: 人民交通出版社.

    Ministry of Communications of the People’s Republic of China, 2012. JTS 146—2012 Code for seismic design of water transport engineering. Beijing: China Communications Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 2008. JGJ 94—2008 建筑桩基技术规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2008. JGJ 94—2008 Technical code for building pile foundations. Beijing: China Architecture & Building Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2012. GB 50191—2012 构筑物抗震设计规范. 北京: 中国计划出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2012. GB 50191—2012 Design code for antiseismic of special structures. Beijing: China Planning Press. (in Chinese)
    朱斌, 熊根, 刘晋超等, 2013. 砂土中大直径单桩水平受荷离心模型试验. 岩土工程学报, 35(10): 1807—1815

    Zhu B. , Xiong G. , Liu J. C. , et al. , 2013. Centrifuge modelling of a large-diameter single pile under lateral loads in sand. Chinese Journal of Geotechnical Engineering, 35(10): 1807—1815. (in Chinese)
    朱志辉, 2006. 土-箱基-框架结构动力相互作用的试验研究与理论分析. 长沙: 湖南大学.

    Zhu Z. H. , 2006. Theoretical analysis and test research on soil-box foundation-structure dynamic interaction system. Changsha: Hunan University. (in Chinese)
    庄海洋, 陈国兴, 梁艳仙等, 2007. 土体动非线性黏弹性模型及其ABAQUS软件的实现. 岩土力学, 28(3): 436—442 doi: 10.3969/j.issn.1000-7598.2007.03.002

    Zhuang H. Y. , Chen G. X. , Liang Y. X. , et al. , 2007. A developed dynamic viscoelastic constitutive relations of soil and implemented by ABAQUS software. Rock and Soil Mechanics, 28(3): 436—442. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.03.002
    Chandler A. M. , 1986. Building damage in Mexico City earthquake. Nature, 320(6062): 497—501. doi: 10.1038/320497a0
    Deb P. , Pal S. K. , 2019. Numerical analysis of piled raft foundation under combined vertical and lateral loading. Ocean Engineering, 190: 106431. doi: 10.1016/j.oceaneng.2019.106431
    Elahi H., Moradi M., Poulos H. G., et al., 2010. Pseudostatic approach for seismic analysis of pile group. Computers and Geotechnics, 37(1—2): 25—39.
    Flores J. , Novaro O. , Seligman T. H. , 1987. Possible resonance effect in the distribution of earthquake damage in Mexico City. Nature, 326(6115): 783—785. doi: 10.1038/326783a0
    Kim B. T. , Yoon G. L. , 2011. Laboratory modeling of laterally loaded pile groups in sand. KSCE Journal of Civil Engineering, 15(1): 65—75. doi: 10.1007/s12205-011-0924-3
    Li L. C. , Liu H. , Wu W. B. , et al. , 2021. Investigation on the behavior of hybrid pile foundation and its surrounding soil during cyclic lateral loading. Ocean Engineering, 240: 110006. doi: 10.1016/j.oceaneng.2021.110006
    Maheshwari B. K. , Truman K. Z. , El Naggar M. H. , et al. , 2004. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations. Canadian Geotechnical Journal, 41(1): 118—133. doi: 10.1139/t03-073
    Niemann C. , O'Loughlin C. , Tian Y. H. , et al. , 2019. Response of pile groups in sand due to lateral cyclic loading. International Journal of Physical Modelling in Geotechnics, 19(6): 318—330. doi: 10.1680/jphmg.18.00027
    Talebi A. , Derakhshani A. , 2019. Estimation of P-multipliers for laterally loaded pile groups in clay and sand. Ships and Offshore Structures, 14(3): 229—237. doi: 10.1080/17445302.2018.1495542
    Xiang B. S. , Huang B. , Yang Z. Y. , et al. , 2017. Influences of pile group effects on wave forces on an offshore bridge pile-cap foundation. Challenges, 8(2): 30. doi: 10.3390/challe8020030
    Xu C. S. , Zhang Z. H. , Li Y. , et al. , 2020. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures. Tunnelling and Underground Space Technology, 104: 103538. doi: 10.1016/j.tust.2020.103538
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  14
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回