• ISSN 1673-5722
  • CN 11-5429/P

海底与近岸陆地地震动作用下跨海隔震连续梁桥地震反应比较

马海龙 王荣霞 王宁宁 安正汉 王东升

马海龙,王荣霞,王宁宁,安正汉,王东升,2023. 海底与近岸陆地地震动作用下跨海隔震连续梁桥地震反应比较. 震灾防御技术,18(2):338−346. doi:10.11899/zzfy20230215. doi: 10.11899/zzfy20230215
引用本文: 马海龙,王荣霞,王宁宁,安正汉,王东升,2023. 海底与近岸陆地地震动作用下跨海隔震连续梁桥地震反应比较. 震灾防御技术,18(2):338−346. doi:10.11899/zzfy20230215. doi: 10.11899/zzfy20230215
Ma Hailong, Wang Rongxia, Wang Ningning, An Zhenghan, Wang Dongsheng. Seismic Response Comparison of Sea-crossing and Seismic Isolated Continuous Girder Bridge under Offshore Ground Motion and Onshore Ground Motion[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 338-346. doi: 10.11899/zzfy20230215
Citation: Ma Hailong, Wang Rongxia, Wang Ningning, An Zhenghan, Wang Dongsheng. Seismic Response Comparison of Sea-crossing and Seismic Isolated Continuous Girder Bridge under Offshore Ground Motion and Onshore Ground Motion[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 338-346. doi: 10.11899/zzfy20230215

海底与近岸陆地地震动作用下跨海隔震连续梁桥地震反应比较

doi: 10.11899/zzfy20230215
基金项目: 国家自然科学基金(51778206);廊坊市科技支撑计划(2019013115)
详细信息
    作者简介:

    马海龙,男,生于1984年。高级工程师。主要从事土木工程设计及施工方面的研究。E-mail:181173885@qq.com

    通讯作者:

    王荣霞,女,生于1971年。副教授。主要从事桥梁结构抗震研究。E-mail:wangrongxia2000@126.com

Seismic Response Comparison of Sea-crossing and Seismic Isolated Continuous Girder Bridge under Offshore Ground Motion and Onshore Ground Motion

  • 摘要: 跨海桥梁抗震时程分析通常采用陆地强震记录作为输入,因海底场地环境与陆地存在诸多差异,需对该方法进行深入研究。结合工程实际,利用ADINA软件建立基底固接跨海隔震连续梁桥分析模型。基于日本KiK-net台网选取震级及震中距相似的7个海底强震台站和7个近岸陆地强震台站各14条水平地震动(EW和NS方向独立考虑),沿桥梁纵桥向输入并进行地震反应时程分析,研究海底地震动和近岸陆地地震动输入下跨海隔震桥梁地震反应。通过对比桥墩最大变形及受力、主梁位移反应和支座最大剪应变,认为在大多数情况下,海底地震动作用下桥梁结构地震反应为近岸陆地地震动的1.3~1.9倍。跨海隔震桥梁抗震时程分析宜采用海底地震动作为输入。
  • 图  1  桥梁整体布置(单位:米)

    Figure  1.  Overall layout of the bridge (Unit: m)

    图  2  主梁和桥墩截面(单位:米)

    Figure  2.  Pier section and main girder cross section(Unit: m)

    图  3  边墩支座断面尺寸(单位:毫米)

    Figure  3.  Bearing section size of side pier (Unit: mm)

    图  4  中墩支座断面尺寸(单位:毫米)

    Figure  4.  Bearing section size of mid-pier(Unit: mm)

    图  5  理想双线性力学模型

    Figure  5.  Ideal bilinear mechanical model

    图  6  桥梁前四阶振型

    Figure  6.  First four vibration mode shapes

    图  7  地震动平均放大系数反应谱

    Figure  7.  The mean amplification factor of seismic waves

    图  8  墩顶最大侧移

    Figure  8.  Maximum lateral displacement of pier top

    图  9  墩底最大弯矩

    Figure  9.  Maximum bending moment of pier bottom

    图  10  主梁纵桥向位移

    Figure  10.  Longitudinal displacement response of girder

    图  11  0.4 g峰值加速度下支座滞回曲线

    Figure  11.  Bearing hysteresis curves with 0.4 g peak accelerations

    图  12  0.6 g峰值加速度下支座滞回曲线

    Figure  12.  Bearing hysteresis curves with 0.6 g peak accelerations

    图  13  支座最大剪应变

    Figure  13.  Maximum shear strain of bearings

    表  1  主梁材料参数

    Table  1.   Main girder material parameters

    材料编号材料名称弹性模量/MPa泊松比密度/
    (kg·m−3
    1C50混凝土34 5000.22 549
    2Q345钢206 0000.37 849
    下载: 导出CSV

    表  2  理想双线性建模参数

    Table  2.   Ideal bilinear modeling parameters

    支座位置Ku/(kN·m−1Kd/(kN·m−1Fy/kNKV/(kN·m−1
    边墩支座32 7804 0004491 667 000
    中墩支座51 9706 6528104 724 000
    下载: 导出CSV

    表  3  地震动台站信息(海底地震动)

    Table  3.   Detailed data of ground motion station

    序号站台编号时间/(年-月-日)东经/(°)北纬/(°)
    1KNG2042006-04-21139.5734.89
    2KNG2032006-04-21139.6434.80
    3SZ00032006-04-21139.0534.82
    4KNG2062006-04-21139.3835.10
    5KNG2012018-07-07139.9234.60
    6SIT0082015-09-12139.7535.98
    7CHB0282015-09-12139.9735.77
    下载: 导出CSV

    表  4  地震动台站信息(近岸陆地地震动)

    Table  4.   Detailed data of ground motion station

    序号站台编号时间/(年-月-日)东经/(°)北纬/(°)
    1CHB0122020-06-25140.33E35.57N
    2IBR0172020-06-25140.32E35.95N
    3CHB0042020-06-25140.49E35.90N
    4MYG0022020-09-12141.51E38.73N
    5MYG0032020-09-12141.31E38.73N
    6IWT0262020-09-12141.10E39.26N
    7IWT0092020-09-12141.40E39.02N
    下载: 导出CSV
  • 陈宝魁, 王东升, 石岩等, 2017. 跨海桥梁抗震设计研究发展综述. 世界地震工程, 33(4): 122—128

    Chen B. K. , Wang D. S. , Shi Y. , et al. , 2017. Advancement in research on seismic design of sea-crossing bridge. World Earthquake Engineering, 33(4): 122—128. (in Chinese)
    陈宝魁, 卢宏飞, 宋固全等, 2020. 海底地震动作用下隔震桥地震反应. 南昌大学学报(工科版), 42(3): 233—241 doi: 10.3969/j.issn.1006-0456.2020.03.006

    Chen B. K. , Lu H. F. , Song G. Q. , et al. , 2020. Seismic response of the sea-crossing isolated bridge under offshore ground motion. Journal of Nanchang University (Engineering & Technology), 42(3): 233—241. (in Chinese) doi: 10.3969/j.issn.1006-0456.2020.03.006
    李超, 2017. 海底空间地震动作用下近海桥梁结构全寿命易损性分析. 大连: 大连理工大学.

    Li C., 2017. Life-cycle seismic fragility analyses of offshore bridge structures subjected to spatially varying seafloor motions. Dalian: Dalian University of Technology. (in Chinese)
    李小军, 李娜, 陈苏, 2021. 中国海域地震区划及关键问题研究. 震灾防御技术, 16(1): 1—10 doi: 10.11899/zzfy20210101

    Li X. J. , Li N. , Chen S. , 2021. Study on seismic zoning in China sea area and its key issues. Technology for Earthquake Disaster Prevention, 16(1): 1—10. (in Chinese) doi: 10.11899/zzfy20210101
    刘驭, 2019. 海底地震动作用下近海桥梁动力响应研究. 大连: 大连交通大学.

    Liu Y., 2019. Dynamic response of offshore bridges under seabed ground motions. Dalian: Dalian Jiaotong University. (in Chinese)
    谭景阳, 胡进军, 周旭彤等, 2020. 考虑不同分类的海底地震动特性及其不确定性分析. 天津大学学报(自然科学与工程技术版), 53(12): 1264—1271

    Tan J. Y. , Hu J. J. , Zhou X. T. , et al. , 2020. Characteristics and uncertainty of classified seafloor ground motion. Journal of Tianjin University (Science and Technology), 53(12): 1264—1271. (in Chinese)
    王德斌, 刘驭, 张蓬勃等, 2019. 海底地震动作用下近海桥梁地震响应研究. 世界地震工程, 35(3): 63—72

    Wang D. B. , Liu Y. , Zhang P. B. , et al. , 2019. Seismic response of offshore bridges under seabed seismic motion. World Earthquake Engineering, 35(3): 63—72. (in Chinese)
    王明远, 张星雷, 袁涌, 2011. 厦漳跨海大桥引桥隔震效果分析. 土木工程与管理学报, 28(3): 382—384 doi: 10.3969/j.issn.2095-0985.2011.03.085

    Wang M. Y. , Zhang X. L. , Yuan Y. , 2011. Dynamic characteristic research in the seismic response analysis of the Xiazhang Cross-sea Bridge. Journal of Civil Engineering and Management, 28(3): 382—384. (in Chinese) doi: 10.3969/j.issn.2095-0985.2011.03.085
    张广锋, 任伟新, 陈亮等, 2013. 东日本大地震中抗震加固后的公路桥的震害特点. 土木工程学报, 46(S1): 239—244 doi: 10.15951/j.tmgcxb.2013.s1.018

    Zhang G. F. , Ren W. X. , Chen L. , et al. , 2013. Seismic damage of retrofitted highway bridges in the 2011 Great East Japan Earthquake. China Civil Engineering Journal, 46(S1): 239—244. (in Chinese) doi: 10.15951/j.tmgcxb.2013.s1.018
    周旭彤, 胡进军, 谭景阳等, 2021. 基于HVSR的DONET1海底地震动场地效应研究. 震灾防御技术, 16(1): 105—115 doi: 10.11899/zzfy20210111

    Zhou X. T. , Hu J. J. , Tan J. Y. , et al. , 2021. The study of site effect of DONET1 offshore ground motions based on HVSR. Technology for Earthquake Disaster Prevention, 16(1): 105—115. (in Chinese) doi: 10.11899/zzfy20210111
    Boore D. M. , Smith C. E. , 1999. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California. Bulletin of the Seismological Society of America, 89(1): 260—274. doi: 10.1785/BSSA0890010260
    Chen B. K. , Wang D. S. , Li H. N. , et al. , 2015. Characteristics of earthquake ground motion on the seafloor. Journal of Earthquake Engineering, 19(6): 874—904. doi: 10.1080/13632469.2015.1006344
    Chen B. K. , Wang D. S. , Li H. N. , et al. , 2017. Vertical-to-horizontal response spectral ratio for offshore ground motions: analysis and simplified design equation. Journal of Central South University, 24(1): 203—216. doi: 10.1007/s11771-017-3421-0
    Ganev T. , Yamazaki F. , Ishizaki H. , et al. , 1998. Response analysis of the Higashi-Kobe Bridge and surrounding soil in the 1995 Hyogoken-Nanbu earthquake. Earthquake Engineering & Structural Dynamics, 27(6): 557—576.
    Penzien J. 2001. Earthquake engineering for transportation structures—past, present, and future. Earthquake Spectra, 17(1): 1-34
    Kitagawa M. , 2004. Technology of the Akashi Kaikyo bridge. Structural Control and Health Monitoring, 11(2): 75—90. doi: 10.1002/stc.31
    Li C. , Hao H. , Li H. N. , et al. , 2015. Theoretical modeling and numerical simulation of seismic motions at seafloor. Soil Dynamics and Earthquake Engineering, 77: 220—225. doi: 10.1016/j.soildyn.2015.05.016
    Li T. H. , Lin J. Q. , Liu J. L. , 2020. Analysis of time-dependent seismic fragility of the offshore bridge under the action of scour and chloride ion corrosion. Structures, 28: 1785—1801. doi: 10.1016/j.istruc.2020.09.045
    Swanger H. J., 1981. Surface waves in strong ground motion with applications to offshore environments. Palo Alto: Stanford University.
    Wilson J. C. , 2003. Repair of new long-span bridges damaged by the 1995 Kobe earthquake. Journal of Performance of Constructed Facilities, 17(4): 196—205. doi: 10.1061/(ASCE)0887-3828(2003)17:4(196)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  20
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回