• ISSN 1673-5722
  • CN 11-5429/P

考虑场地液化影响的海堤工程震害预测方法研究

何润泽 郭恩栋 闫培雷 吴厚礼 金宇航 王晓娜

胡晓辉, 盛书中, 万永革, 李振月, 李泽潇, 杨帆. 基于国家地震科学数据开展断层面参数研究的初探——以唐山地震为例[J]. 震灾防御技术, 2019, 14(2): 341-351. doi: 10.11899/zzfy20190208
引用本文: 何润泽,郭恩栋,闫培雷,吴厚礼,金宇航,王晓娜,2023. 考虑场地液化影响的海堤工程震害预测方法研究. 震灾防御技术,18(2):330−337. doi:10.11899/zzfy20230214. doi: 10.11899/zzfy20230214
Hu Xiaohui, Sheng Shuzhong, Wan Yongge, Li Zhenyue, Li Zexiao, Yang Fan. Preliminary Study on Fault Parameters Based on National Seismic Data——An Example of Tangshan Earthquake[J]. Technology for Earthquake Disaster Prevention, 2019, 14(2): 341-351. doi: 10.11899/zzfy20190208
Citation: He Runze, Guo Endong, Yan Peilei, Wu Houli, Jin Yuhang, Wang Xiaona. Earthquake Damage Prediction Method of Seawall Engineering Considering Site Liquefaction[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 330-337. doi: 10.11899/zzfy20230214

考虑场地液化影响的海堤工程震害预测方法研究

doi: 10.11899/zzfy20230214
基金项目: 中国地震局地震工程与工程振动重点实验室重点专项(2019EEEVL0103-01);2019年胜利油田重点建(构)筑物震害预测及数据分析专项(19-FW2099-0111)
详细信息
    作者简介:

    何润泽,男,生于1996年。硕士。主要从事生命线工程抗震研究。E-mail:923295526@qq.com

    通讯作者:

    郭恩栋,男,生于1966年。研究员。主要从事生命线工程抗震研究。E-mail:iemged@263.net

Earthquake Damage Prediction Method of Seawall Engineering Considering Site Liquefaction

  • 摘要: 为合理进行海堤工程震害预测,通过改变液化土层力学参数的方法考虑场地液化对海堤抗滑稳定性的影响,综合海堤本体结构抗滑安全系数和场地液化程度,提出新的海堤工程震害预测方法,并给出海堤破坏等级划分标准。以某海堤工程为算例,采用理正岩土分析软件建立海堤抗滑稳定性分析模型,进行不同地震烈度下海堤震害预测。研究结果表明,场地液化对海堤地震稳定性有较大影响,依托的海堤工程满足当地7度抗震设防要求,但8度时可发生中等破坏,存在较高的地震灾害风险,宜采取有针对性的加固措施。
  • 断层面参数是描述断层构造和地震机制的重要参数,该参数既体现了断层构造的性质,又为地震发震构造判定提供依据,在地球物理学、地质学等学科中具有重要地位。确定断层参数的方法主要有地质学方法、地球物理学方法等,其中地质学方法主要是通过浅层的地质信息推测断层产状,虽然比较直观,但断层浅部出露与深部在构造形态上可能存在较大差异,存在一定的局限性;地球物理学方法包括天然地震法、地震勘探、电法勘探等,其中地震勘探、电法勘探等物探方法多用于城市活断层探测,天然地震法确定地震断层面参数的方法主要有体波和面波联合法、面波波形及小震确定层面参数等。地球物理学方法所采用的资料包含深部信息,能更好地刻画深部断层形态。

    现今,随着地震台网的密集以及地震定位精度的提高,越来越多的学者开始使用小震分布确定断层面参数(王鸣等,1992Ouillon等,2008万永革等,2008王福昌等, 2012, 2013盛书中等,2014),但研究所使用的地震数据均为双差定位后的精定位地震目录数据。自2009年1月1日开始,由国家地震台网和31个区域地震台网组成的覆盖中国的地震监测台网初步建成,通过统一编目系统(黄文辉等,2016),实现了国家地震台网和区域地震台网的统一编目。通过改变国家地震台的数据上传方式,形成新的地震目录编辑方法,统一将地震事件进行震相删选和重新定位,大大提高地震参数的测定精度。本文尝试基于实例地震数据,直接使用中国地震台网统一地震目录来确定断层面参数,并将研究结果与前人利用精定位数据得到的结果进行比较,以验证该方法的可行性。

    1976年河北唐山发生了MS 7.8地震,许多学者对唐山地震的发震构造及破裂做了大量研究(虢顺民等,1977Butler等,1979陈运泰等,1979李钦祖等,1980张之立等,1980王景明等,1981Nábělek等,1987尤惠川等,2002),且震后震源区小震频发,故该地区积累了丰富的小震资料。随着地震定位方法在地震学中的应用及小震定位精度的提高,对唐山地区小震分布的研究也越来越多,张宏志等(2008)采用双差定位法对唐山地震震区中小地震重新定位,重新定位后的唐山断裂南段走向为NNE向,断裂北段转为NE向,滦县断裂附近区域地震分布呈“丁”字形,宁河断裂地震分布无明显优势方向;万永革等(2008)将小震分布确定断层面参数的方法应用于唐山地震序列,把唐山地震序列分为宁河断裂段、唐山断裂南段、唐山断裂北段、卢龙断裂段和滦县断裂段,对唐山地震序列定量研究,利用模拟退火算法和高斯迭代算法相结合的算法给出各段地震断层面的走向、倾角、位置及其误差。因此,本文选择地震资料丰富且研究程度较高的唐山地震进行研究及实例分析。

    本文使用的地震数据来源于国家科技基础条件平台——国家地震科学数据共享中心1提供的中国地震台网统一地震目录,研究区域为117.2°—119.2°E、39°—40°N(图 1)。选取2009年1月1日—2018年10月10日发生的4250次地震事件,震源深度集中分布在3—20km,震级主要为ML 2.5以下(图 2)。

    图 1  唐山地区小震分布
    Figure 1.  Distribution of small earthquakes in the Tangshan area
    图 2  小震深度(a)和震级分布图(b)
    Figure 2.  Histogram of depth (a) and magnitude (b) of small earthquakes

    1 http://data.carthquake.cn

    本研究采用万永革等(2008)提出的利用小震拟合断层面参数的方法。该方法基于2个基本假设:小震均发生在断层面及其附近区域;发震断层面可近似为1个或多个平面。基于小震震源位置到该平面的距离最小,建立求解断层面参数的数学模型,采用模拟退火全局搜索和高斯-牛顿局部搜索相结合的方法,给出全局最优断层面参数及其误差,同时还给出了断层面的顶点坐标,更直观地展示断层形态。该方法被广泛地应用于断层面参数的确定(Zhou等,2010李迎秋等,2011刘白云等,2012杨超群等,2013盛书中等,2014Wang等,2014潘睿等,2015)。为了方便结果的对比分析,断层面参数拟合所选取的各段数据范围(图 1中矩形方框)同万永革等(2008)的研究,即将唐山地震序列分为5段拟合。

    对各段断层面参数进行了分段拟合,拟合结果与万永革等(2008)的结果对比见表 1。其中,第1段为宁河断裂段,该段走向为246.6°,倾角为81.8°,走向和倾角的标准差相对较大,倾角与万永革等(2008)的研究结果相差15.8°,主要原因为该段小震的数量少,丛集性较差,因此反演断层参数结果最差。第2段为唐山断裂南段,该段走向为213.4°,倾角为81.9°。第3段为唐山断裂北段,该段走向为231.4°,倾角为89.1°,断层近乎直立(图 3(c)),小震集中分布在断层面4km范围内(图 3(d)),由于该段小震数目最多,反演得到走向和倾角的标准差最小,与万永革等(2008)的研究结果差值也最小。第4、5段分别为卢龙断裂段和滦县断裂段,其中卢龙断裂段的走向和倾角分别为46.1°和89.3°,断层面近乎直立,滦县断裂段的走向和倾角分别为125.1°和76.2°,结果与万永革等(2008)的研究结果相近。由表 1可见,各段断层顶点坐标的反演结果与万永革等(2008)的结果较为一致,其原因可能为两者反演断层面参数时选择的地震资料范围一致;断层面的深度分布与万永革等(2008)的结果相比均较浅,本文给出的断层面上边界均为4km左右,万永革等(2008)给出的断层面上边界分布更深,为6—10km。

    表 1  运用小震资料求得的唐山地震序列各段断层面走向、倾角、标准差和位置
    Table 1.  Fault plane parameters determined by using small earthquake for segments in Tangshan earthquake
    断层名 小震个数 走向/° 倾角/° 顶点位置(纬度/°N,经度/°E,深度/km) 数据来源
    标准差 标准差
    宁河断裂段 61 246.6 4.0 81.8 4.2 (39.32,117.94,3.8),(39.35,117.93,21.7)
    (39.29,117.75,21.7),(39.27,117.77,3.8)
    本文结果
    33 253.3 3.9 66.0 5.0 (39.31,117.96,10.0),(39.37,117.94,24.6)
    (39.32,117.74,24.6),(39.27,117.76,10.0)
    万永革等(2008)
    唐山断裂南段 250 213.4 0.8 81.9 1.5 (39.57,118.18,3.8),(39.58,118.15,22.0)
    (39.33,117.94,22.0),(39.31,117.96,3.8)
    本文结果
    98 210.1 1.2 73.7 2.8 (39.57,118.18,6.4),(39.59,118.13,22.9)
    (39.33,117.94,22.9),(39.31,117.99,6.4)
    万永革等(2008)
    唐山断裂北段 1646 231.4 0.3 89.1 0.6 (39.78,118.49,4.0),(39.78,118.49,19.0)
    (39.60,118.19,19.0),(39.60,118.19,4.0)
    本文结果
    665 233.1 0.5 89.1 1.3 (39.78,118.49,7.7),(39.78,118.49,21.8)
    (39.61,118.19,21.8),(39.61,118.19,7.7)
    万永革等(2008)
    卢龙断裂段 694 46.1 0.6 89.3 1.5 (39.86,118.82,4.0),(39.86,118.83,16.9)
    (39.72,118.62,16.9),(39.71,118.62,4.0)
    本文结果
    176 39.0 0.9 86.7 1.3 (39.72,118.62,7.8),(39.72,118.63,22.6)
    (39.86,118.78,22.6),(39.86,118.77,7.8)
    万永革等(2008)
    滦县断裂段 404 125.1 1.6 76.2 1.8 (39.75,118.70,4.2),(39.73,118.68,13.5)
    (39.67,118.80,13.5),(39.70,118.81,4.2)
    本文结果
    160 118.4 1.9 76.9 2.0 (39.75,118.70,8.4),(39.73,118.68,20.3)
    (39.68,118.80,20.3),(39.70,118.81,8.4)
    万永革等(2008)
    下载: 导出CSV 
    | 显示表格
    图 3  唐山断裂北段小震拟合结果
    Figure 3.  The fitting result by using small earthquakes along the north segment of Tangshan fault

    前人对唐山地震断层面作了大量研究,根据P波初动(张之立等,1980)和野外地质调查(虢顺民等,1977尤惠川等,2002)得到断层走向为N30°E;根据面波资料(Butler等,1979)得到断层面走向为N40°E;根据大地测量资料(陈运泰等,1979)和卫星资料(王景明等,1981)得到断层走向为N50°E。上述结果表明唐山地震破裂非常复杂,实际断层面并非1个简单的几何面,而是错综复杂的破裂体。陈运泰等(1979)的研究结果表明唐山地震总体走向为N49°E,初始破裂的走向为N30°E,即破裂起始于N30°E走向的南段断裂,而后转向N50°E走向的北段断裂(万永革等,2008),与本文给出的断层南段走向213.4°、北段走向231.4°基本一致。对于断层倾角,李钦祖等(1980)张之立等(1980)给出总体倾向为120°,倾角为90°;Nebelek等(1987)给出断层为西北倾向,南段倾角为78°,北段倾角为80°;尤惠川等(2002)通过野外地质调查给出总体断层倾向向西,倾角70°—80°,与本文给出的断层南段倾角81.9°、北段倾角89.1°较为一致。杜晨晓等(2010)根据前人研究结果得到滦县地震的震源参数,其断层走向为N120°E,倾角为80°,与本文给出的滦县段反演结果较为一致。

    本文结果与万永革等(2008)的研究结果存在一定差异,为判定每段差异是否在可接受的范围内,搜集了18组由不同学者和机构给出的同一地震断层面参数(表 2),对其差异进行统计可在一定程度上反映对断层面参数的约束能力,并将其作为参考,探讨本文研究结果的合理性。各组参数中走向和倾角的最大、最小差异值如图 4所示。

    表 2  地震断层面参数研究结果差异统计
    Table 2.  Statistical results of the differences in seismic fault plane parameters
    地震事件 主节面/° 走向差异/° 倾角差异/° 数据来源
    走向 倾角 最大值 最小值 最大值 最小值
    2001年2月23日四川雅江MS 6.0地震 123 25 31 6 17 8 龙思胜(2004)
    117 42 美国地质勘探局(USGS)
    92 34 哈佛大学(HRV)
    2003年9月27日中俄蒙边界MS 7.9地震 131 71 4 1 14 6 全球矩心矩张量(gCMT)
    130 85 美国地质勘探局(USGS)
    127 79 赵翠萍等(2005)
    2006年12月26日中国台湾南部滨海MS 7.2地震 330 58 11.5 4 25 5.1 全球矩心矩张量(gCMT)
    334 83 美国地质勘探局(USGS)
    341.5 77.9 郭志等(2008)
    2008年5月12日四川汶川MS 8.0地震 357 68 23 2 22 2 全球矩心矩张量(gCMT)
    15 60 美国地质勘探局(USGS)
    7 55 地球物理研究所(CEA-IGP)
    5 48 郭祥云等(2010)
    352 70 郑勇等(2009)
    2008年10月5日新疆天山-帕米尔MS 6.7地震 82 53 24.8 7.8 10.3 2.3 全球矩心矩张量(gCMT)
    65 45 美国地质勘探局(USGS)
    57.2 42.7 苏金蓉等(2013)
    2010年4月14日青海玉树MS 7.1地震 300 88 6.4 1 10 0 全球矩心矩张量(gCMT)
    301 86 美国地质勘探局(USGS)
    209 88 中国地震台网中心(CENC)
    294.6 78 盛书中等(2014)
    2012年5月3日甘肃金塔MS 5.4地震 162 80 13 1 16 2 全球矩心矩张量(gCMT)
    163 74 地球物理研究所(CEA-IGP)
    159 78 地震预测研究所(CEA-IES)
    172 64 张辉等(2012)
    2013年4月20日四川芦山MS 7.0地震 210 38 12 0 14 1 全球矩心矩张量(gCMT)
    198 33 美国地质勘探局(USGS)
    210 47 地震预测研究所(CEA-IES)
    216 45 谢祖军等(2013)
    209 46 吕坚等(2013)
    2013年8月28日云南德钦MS 5.9地震 292 43 14 7 10 0 全球矩心矩张量(gCMT)
    285 53 地球物理研究所(CEA-IGP)
    299 53 罗钧等(2015)
    2014年2月12日新疆于田MS 7.3地震 242 82 3 0 4 0 美国地质勘探局(USGS)
    239 82 中国地震局(CEA)
    242 78 中国地震台网中心(CENC)
    2014年5月30日云南盈江MS 6.1地震 80 83 20 2 3 0 美国地质勘探局(USGS)
    82 85 全球矩心矩张量(gCMT)
    260 82 地球物理研究所(CEA-IGP)
    85 83 赵旭等(2014)
    2014年8月3日云南鲁甸MS 6.5地震 162 86 2 0 4 0.9 美国地质勘探局(USGS)
    160 90 全球矩心矩张量(gCMT)
    160 87 地球物理研究所(CEA-IGP)
    160 89.1 刘丽芳等(2014)
    2016年1月21日青海省门源县MS 6.4地震 143 35 34 2 11 2 中国地震台网中心(CENC)
    141 38 地球物理研究所(CEA—IGP)
    134 43 哈佛大学(HRV)
    157 34 李启雷(2016)
    129 45 李晓峰(2017)
    2017年8月8日四川九寨沟MS 7.0地震 153 84 6 0 10 1 美国地质勘探局(USGS)
    150 78 全球矩心矩张量(gCMT)
    156 79 易桂喜等(2017)
    150 80 杨宜海等(2017)
    152 74 谢祖军等(2018)
    2017年11月18日西藏米林M 6.9地震 132 55 8.3 1 12.4 2.4 美国地质勘探局(USGS)
    124.7 59 地震预测研究所(CEA-IES)
    133 46.6 吴宝峰(2017)
    2018年9月8日云南墨江5.9级地震* 129 81 6 1.8 2 1 赵博等*
    123 79 郭祥云等*
    124.8 80 地震预测研究所(CEA-IES)
    2018年9月12日陕西宁强5.3级地震* 171 67 6 4.1 18 0 中国地震台网中心台网部应急组*
    165 85 赵博等*
    165 85 郭祥云等*
    169.1 78 地震预测研究所(CEA-IES)
    2018年9月28日西藏日土5.1级地震* 323 71 28 5 28 2 中国地震台网中心台网部应急组*
    304 76 赵博等*
    295 61 郭祥云等*
    318 59 地震预测研究所(CEA-IES)
    309 48 地球物理研究所(CEA—IGP)
    注:加*地震数据来源于中国地震台网中心的地震监测人微信公共号及微信公众平台。
    下载: 导出CSV 
    | 显示表格
    图 4  同一地震断层走向(a)和倾角(b)差异值统计
    Figure 4.  The differences of fault strike (a) and dip (b) of the same earthquake by different studies

    图 4可见,不同学者和机构给出的断层走向和倾角的差异值虽有一定的离散性,但其差异范围可作为参考。本文得到的走向和倾角的差异值均在18组结果的最大及最小差异范围内,故利用中国地震台网统一地震目录计算得到的结果是可靠的,证明中国地震台网统一地震目录可以用于断层面参数的确定。

    本文各段断层的顶点坐标(表 1)与万永革等(2008)的结果一致,但断层深度有一定的差距。本文结果显示各段断层上边界均为4km左右,万永革等(2008)给出的断层上边界分布更深,造成差异的主要原因可能是万永革等(2008)认为5km以上的小震是深部破裂引发的沉积层破裂,故在确定发震断层面参数时未考虑5km以上的小震,而本文在进行断层面参数反演时,将所有的地震事件都考虑在内,因此反演的断层面上边界分布较浅。

    胡新亮等(2001)运用小孔径数字地震台网对唐山地区的地震进行重新定位,通过对比以往地震目录中给出的震源深度,表明唐山地区的地震发生在地壳浅层。于湘伟等(2010)采用双差定位法对华北地区的地震重新定位,精定位后的结果显示83%的地震震源深度位于0—15km,与其他学者的研究结果一致(胡幸平等,2013赵博等,2013李红光等,2015),上述研究表明华北地区的地震主要发生在中上地壳。王椿镛等(2017)给出华北地壳厚度为32—35km,其中上地壳厚度为10—12km,中地壳为8—10km。本文采用的地震数据震源深度主要分布于3—20km,位于华北地壳的中上部,与华北地区地震震源深度分布一致(图 2(a)),由此表明统一地震目录数据给出的地震深度范围是合理的,因此,反演出的断层面上、下边界位置是可靠的。

    本文基于中国地震台网统一地震目录提供的地震资料,应用小震确定断层面参数法确定了唐山地震序列的断层面参数,研究中数据分段及其选取范围均参考了万永革等(2008)的研究。对所得的各断层面参数进行对比分析,表明本文结果与万永革等(2008)研究结果的差异在可接受范围内,证明了中国地震台网统一地震目录可以用于断层面参数的确定。

    随着地震台网的加密布设,其地震定位能力和定位精度均显著提高。地震活跃地区大量的地震定位数据为拟合断层的几何形态奠定了基础,今后,国家台网统一地震目录可广泛地应用于活断层的发现及其形态的确定。

    致谢: 感谢审稿专家提出的宝贵修改意见以及国家地震科学数据共享中心提供的数据。
  • 图  1  海堤震害预测方法流程

    Figure  1.  Flow chart of seawall earthquake damage prediction

    图  2  海堤稳定性分析示意

    Figure  2.  Schematic diagram of seawall stability analysis

    图  3  海堤实景

    Figure  3.  Seawall

    图  4  海堤断面

    Figure  4.  Seawall section

    图  5  地震强度为0.20 g时外坡迎浪面海堤地震稳定性分析结果

    Figure  5.  Seismic stability analysis results of the wave face of the outer slope seawall with an earthquake intensity of 0.20 g

    图  6  地震强度为0.20 g时内坡背浪面海堤地震稳定性分析结果

    Figure  6.  Seismic stability analysis results of a seawall on the inner slope and back wave surface with an earthquake intensity of 0.20 g

    表  1  计算参数修正方法

    Table  1.   Calculation parameter correction method

    场地液化程度黏聚力c内摩擦角
    未液化cφ
    轻微液化0.92c~0.99c0.82φ~0.99φ
    中等液化0.80c~0.91c0.60φ~0.81φ
    严重液化0.68c~0.79c0.42φ~0.59φ
    下载: 导出CSV

    表  2  海堤滑坡与抗滑安全系数最小值的关系

    Table  2.   Relationship between seawall landslide and minimum safety factor of anti-sliding

    抗滑安全系数最小值海堤状态
    $ {K_{\rm{s}}} \in \left( {0\;,\;1.05} \right) $滑坡
    $ {K_{\rm{s}}} = 1.05 $临界
    $ {K_{\rm{s}}} \in \left( {1.05\;,\; + \infty } \right) $不滑坡
    下载: 导出CSV

    表  3  海堤破坏等级评定方法

    Table  3.   Evaluation method of seawall damage grade

    破坏等级评定依据
    基本完好海堤抗滑安全系数最小值>1.05,且海堤地基未液化
    轻微破坏海堤抗滑安全系数最小值>1.05,且海堤地基轻微液化
    中等破坏海堤抗滑安全系数最小值>1.05,且海堤地基中等液化
    严重破坏海堤抗滑安全系数最小值>1.05,且海堤地基严重液化
    毁坏海堤抗滑安全系数最小值<1.05
    下载: 导出CSV

    表  4  不同破坏等级海堤破坏现象和功能状态

    Table  4.   Phenomena and engineering state corresponding to seawall damage grades

    破坏等级破坏现象和功能状态
    基本完好堤坝表面完好,无须维修能够继续使用
    轻微破坏堤坝表面有轻微裂痕,局部维修后能继续使用
    中等破坏堤坝表面有较多裂缝,加固后方能使用
    严重破坏堤坝表面多处开裂,局部坍塌,大修后方能使用
    毁坏堤坝坍塌,海堤使用功能丧失,需重建
    下载: 导出CSV

    表  5  场地液化程度判定结果

    Table  5.   Determination results of site liquefaction degree

    地震加速度值场地液化程度
    0.10 g不发生液化
    0.15 g中等液化
    0.20 g及以上严重液化
    下载: 导出CSV

    表  6  模型计算参数

    Table  6.   Calculation parameters of the model

    参数地震强度/g
    0.050.100.150.200.300.400.80
    土体重度/(kN·m−3土层118.0718.0718.0718.0718.0718.0718.07
    土层219.5219.5219.5219.5219.5219.5219.52
    土体黏聚力/kPa土层116.0016.0016.0016.0016.0016.0016.00
    土层213.0013.0010.408.848.848.848.84
    土体内摩擦角/(°)土层118.0018.0018.0018.0018.0018.0018.00
    土层229.0029.0017.4012.1812.1812.1812.18
    下载: 导出CSV

    表  7  海堤土层高程分布

    Table  7.   Soil layer distribution map of seawall

    土层种类土层高程/m
    粉土−1.170~−0.370
    粉质黏土−8.070~−1.170
    粉土−11.270~−8.070
    粉质黏土−14.470~−11.270
    下载: 导出CSV

    表  8  海堤地震稳定性分析结果

    Table  8.   Seawall seismic stability analysis results

    地震强度/g外坡迎浪面海堤抗滑安全系数内坡背浪面海堤抗滑安全系数
    考虑液化不考虑液化考虑液化不考虑液化
    0.051.3271.3271.9901.990
    0.101.1801.1801.7461.746
    0.151.1371.1481.7021.692
    0.201.0431.1191.5981.603
    0.300.9631.0641.4211.528
    0.400.8951.0031.2381.467
    0.800.7720.9721.0481.381
    下载: 导出CSV

    表  9  海堤震害预测结果

    Table  9.   Forecast results of sea wall earthquake damage

    地震强度/g0.050.100.150.200.300.400.80
    Fsy1.3271.1801.1371.0430.9630.8950.772
    Fsb1.9901.7461.7021.5981.4211.2381.048
    液化程度不发生液化不发生液化中等液化严重液化严重液化严重液化严重液化
    震害等级基本完好基本完好中等破坏严重破坏毁坏毁坏毁坏
    下载: 导出CSV
  • 白铭学, 张苏民, 1990. 高烈度地震时黄土地层的液化移动. 工程勘察, (6): 1—5

    Bai M. X. , Zhang S. M. , 1990. Landslide induced by liquefaction of loessial soil during earthquake of high intensity. Geotechnical Investigation and Surveying, (6): 1—5. (in Chinese)
    蔡为武, 1999. 水工建筑物抗震设计探讨. 水利水电科技进展, 19(4): 21—24

    Cai W. W. , 1999. Antiseismic design of hydraulic structures. Advances in Science and Technology of Water Resources, 19(4): 21—24. (in Chinese)
    陈晓平, 黄井武, 张黎明等, 2007. 软基海堤结构稳定性研究. 岩土力学, 28(12): 2495—2500

    Chen X. P. , Huang J. W. , Zhang L. M. , et al. , 2007. Stability study for coastal levee on soft foundation. Rock and Soil Mechanics, 28(12): 2495—2500. (in Chinese)
    郭翔, 张发明, 孙梦雅等, 2016. 高潮位作用下施工期海堤抗滑稳定性研究. 河北工程大学学报(自然科学版), 33(2): 82—85

    Guo X. , Zhang F. M. , Sun M. Y. , et al. , 2016. Study on the stability against sliding of seawalls in construction period under the action of high tide level. Journal of Hebei University of Engineering (Natural Science Edition), 33(2): 82—85. (in Chinese)
    胡彩清, 2014. 筒型基础在地震荷载下土体液化及承载性能研究. 天津: 天津大学.

    Hu C. Q., 2014. Research of soil liquefaction and bearing performance of bucket foundation under seismic load. Tianjin: Tianjin University. (in Chinese)
    蒋清国, 2015. 液化地层下地铁工程抗地震液化措施研究. 震灾防御技术, 10(1): 95—107

    Jiang Q. G. , 2015. Anti-liquefaction measures for subway engineering in liquefiable soil layers. Technology for Earthquake Disaster Prevention, 10(1): 95—107. (in Chinese)
    李家宁, 2007. 孤东海堤坝身地震稳定性评价. 现代企业教育, (18): 81.
    卢盛松, 姜朴, 孙德安, 1987. 海堤地震反应及稳定性分析. 河海大学学报, 15(6): 65—71

    Lu S. S. , Jiang P. , Sun D. A. , 1987. Sesmic responsibility and stability analysis of sea bank. Journal of Hohai University, 15(6): 65—71. (in Chinese)
    卢永金, 何友声, 刘桦, 2005. 海堤设防标准探讨. 中国工程科学, 7(12): 17—23

    Lu Y. J. , He Y. S. , Liu Y. , 2005. Research on seawall flood defense criteria. Engineering Science, 7(12): 17—23. (in Chinese)
    毛昶熙, 段祥宝, 毛佩郁等, 1999. 海堤结构型式及抗滑稳定性计算分析. 水利学报, (11): 30—37

    Mao C. X. , Duan X. B. , Mao P. Y. , et al. , 1999. Analysis on structural shape of sea dyke and its sliding stability. Journal of Hydraulic Engineering, (11): 30—37. (in Chinese)
    毛昶熙, 段祥宝, 毛佩郁等, 2000. 海堤护坡块体的稳定性分析. 水利学报, (8): 32—38, 45

    Mao C. X. , Duan X. B. , Mao P. Y. , et al. , 2000. Analysis on stability of revetment block in sea dyke. Journal of Hydraulic Engineering, (8): 32—38, 45. (in Chinese)
    蒲高军, 冯秀丽, 2005. 孤东海堤海域浅层地基土地震效应分析. 油气田地面工程, 24(4): 16—17.
    时振梁, 李裕澈, 张晓东, 2002. 中国地震区划图应用和工程抗震. 中国工程科学, 4(8): 20—25

    Shi Z. L. , Li Y. C. , Zhang X. D. , 2002. Earthquake resistant engineering and application of seismic zonation map of China. Engineering Science, 4(8): 20—25. (in Chinese)
    孙锋, 潘蓉, 周群等, 2014. 某核电厂软基海堤地震动力响应规律及工程对策探讨. 工程抗震与加固改造, 36(5): 138—142

    Sun F. , Pan Y. , Zhou Q. , et al. , 2014. Study on dynamic response analysis and engineering countermeasure of coastal levee on soft soil foundation of nuclear power Plant. Earthquake Resistant Engineering and Retrofitting, 36(5): 138—142. (in Chinese)
    孙晓东, 王丹, 2010. 土的黏聚力取值分析. 辽宁建材, (3): 39—41

    Sun X. D. , Wang D. , 2010. Analysis of cohesive force of soil. Liaoning Building Materials, (3): 39—41. (in Chinese)
    王明星, 石洋, 芦俊波等, 2013. 德商高速鄄城至菏泽段震动液化地基处理方案. 北方交通, (6): 37—39

    Wang M. X. , Shi Y. , Lu J. B. , et al. , 2013. Treatment scheme for vibration liquefaction foundation of Juancheng to Heze section in Deshang expressway. Northern Communications, (6): 37—39. (in Chinese)
    夏元友, 熊海丰, 2004. 边坡稳定性影响因素敏感性人工神经网络分析. 岩石力学与工程学报, 23(16): 2703-2707

    Xia Y. Y. , Xiong H. F. , 2004. Sensibility analysis of slope stability based on artificial neural network. Chinese Journal of Rock Mechanics and Engineering, 23(16): 2703-2707. (in Chinese)
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2009. GB/T 24336—2009 生命线工程地震破坏等级划分. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2009. GB/T 24336—2009 Classification of earthquake damage to lifeline engineering. Beijing: Standards Press of China. (in Chinese)
    中华人民共和国建设部, 2008. JGJ 94—2008 建筑桩基技术规范. 北京: 中国建筑工业出版社.
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2017. GB 51254—2017 高填方地基技术规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2017. GB 51254—2017 Technical code for deep filled ground. Beijing: China Architecture & Building Press. (in Chinese)
    周斌, 李蕾, 李先梅, 2004. 胜利油田孤东海堤地震液化及稳定性评价. 华南地震, 24(3): 25—31

    Zhou B. , Li L. , Li X. M. , 2004. Earthquake sand liquefaction and evaluation of dam stability for Gudong Sea Wall in Shengli oil field. South China Journal of Seismology, 24(3): 25—31. (in Chinese)
    Yasuhara K. , Yang S. S. , Horikawa I. , et al. , 2018. Settlement of river dykes and their adjacent residences on soft clay deposits after the Tohoku-Pacific Ocean earthquake in 2011. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49(2): 41—48.
  • 加载中
图(6) / 表(9)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  22
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回