Comprehensive Evaluation of Earthquake Sustainability of Existing Tunnels
-
摘要: 为客观评价在役隧道震害综合承灾情况,从隧道震害危险性的压力指标与隧道自身及所处工程环境的承压指标筛选具有代表性、可操作性的分级指标。以隧道承灾系统为研究主体,运用最小偏差法将主、客观权重集合,得到评价指标的组合权重,并利用GRA-TOPSIS法对在役隧道震害综合承灾度进行评价,确定隧道震害承灾情况。选取新疆某3个隧道中的5个区段为研究对象,运用GRA-TOPSIS法构建的隧道震害综合承灾度评价模型确定隧道震害承灾等级,评价结果与现场调查结果趋于一致。对影响承灾度的主要因素进行分析,可为各区段制定适宜的修复策略提供参考。
-
关键词:
- 隧道 /
- 震害 /
- 承灾度 /
- 最小偏差组合赋权 /
- GRA-TOPSIS
Abstract: In order to objectively evaluate the comprehensive hazard-bearing status of the in-service tunnels, an evaluation index system for the comprehensive hazard-bearing degree of the tunnel earthquake damage was constructed from two aspects: the risk of the tunnel earthquake damage and the hazard-bearing capacity of the tunnel itself and its engineering environment. Taking the tunnel disaster bearing system as the main research object, the minimum deviation method is used to collect the subjective and objective weights to obtain the combined weight of the evaluation indicators, and the GRA-TOPSIS method is used to evaluate the comprehensive earthquake disaster bearing degree of the in-service tunnel, and determine the earthquake damage bearing of the tunnel. Five tunnel sections out of three tunnels in Xinjiang were selected as the research objects, and the above-mentioned model was used to determine the earthquake disaster-bearing level of the tunnel. The evaluation results tend to be consistent with the field investigation results. The main factors can provide a reference for formulating appropriate repair strategies for each section. -
引言
地壳应力状态分析在地学研究领域中占有重要地位,绘制地壳应力图并准确表达应力场分布特征一直是科学家们关心的问题。目前国内外专家多采用世界应力图计划(The World Stress Map,WSM)提供的可视化工具CASMO和CASMI实现地应力图的绘制(Roth等,2001;Tingay等,2005;胡幸平,2018),其中CASMO为在线绘图网页,CASMI为单机版人机交互绘图软件。此外,国内相关科研机构还基于商业GIS软件(如ArcGIS、MapInfo等)开发了单机版系统,用于绘制地应力图,如基于GIS的地震分析预报系统(陆远忠等,2000)、中国大陆地壳应力环境基础数据库查询分析系统(崔效锋等,2004)、基于WebGIS的中国大陆地壳应力环境系统(郝天平等,2012)等。近年来,上述工具软件在地应力研究中发挥了重要辅助作用。
然而,上述软件均由用户通过人机交互控件输入或选择参数,无法添加自定义要素精修图形细节,如果用户额外添加图层,需借助ArcGIS、Illustrator、Photoshop等商业软件编辑。上述软件在降低绘制应力图难度的同时失去了绘图灵活性,间接增加了用户绘图的复杂度。人机交互式绘图难以实现批量化图件处理,影响震后地应力场应急产品的快速产出,不利于跟进应急管理部对地震应急产品快速产出的要求。为解决以上问题,本文编写易于理解、支持代码改写且利于批量化处理的程序,为用户绘制应力图提供技术性帮助。
GMT作为脚本式绘图工具,同时也是CASMO、CASMI等软件的底层工具,具有开源免费、可精确控制绘图细节、易批量制图的优点,目前已在大地测量及地震成果中得到广泛应用(占伟等,2010;张永奇等,2013;Fischer等,2014;刘珠妹等,2018;Seredkina等,2018)。然而,GMT脚本不易理解和学习,且其内置符号不满足国际通用地应力符号(图 1)绘制需要。因此,本文研究GMT自定义符号设计方法与传参技术,设计利用GMT软件进行地应力图绘制的整体流程,最终实现地应力数据矢量和应力状态信息的准确表达,极大地简化了用户批量绘制应力图的工作。本文研究成果已在由中国地震台网中心主导、湖北省地震局开发的《震后趋势判定技术系统》中得到应用,实现了震情触发下的地应力图智能成图和产品自动发布,以帮助科研人员快速分析地震周边构造应力场,从而提高震后趋势会商效率。
1. GMT软件概况
GMT是由Wessel等(1998)在哥伦比亚读研期间共同开发的一款开源免费、兼容性强的通用制图软件,具有强大的绘图和数据处理功能。开发者遵循Unix模块化设计,将一个多功能的复杂程序划分成若干个简单、功能单一的程序模块,有利于程序优化、分工和调试。
与目前常用的绘图软件ArcGIS、MapGIS、MapSIS相比,GMT通过纯命令式操作,不仅内存占有率低、执行效率高,且方便用户批量化产出图件。GMT支持30多种投影方式的地图绘制,默认输出格式为PS(PostScript)文件,优点是可供跨平台、高质量的图形打印。
GMT常用于绘制二维网格文件,除内置颜色及符号供用户绘图直接使用外,GMT还支持自定义颜色及自定义符号,目的是提高绘图的灵活度。其中颜色由色标文件CPT(Color Palette Table)控制,自定义符号由符号文件决定。相比创建CPT文件,符号文件的自定义更复杂,要求用户使用GMT中特有的宏命令设计,这是本文绘制应力符号的关键部分。
时至今日,GMT软件仍在持续维护更新,用户可在Unix、macOS、Windows系统下安装配置后使用GMT脚本进行绘图和数据处理。
2. 应力图实现思路
国际上通用的应力图绘制样式如图 1所示(Heidbach等,2018),该图显示WSM2016数据库发布的全球A-C质量应力分布,图中表达了7类应力符号,分别对应震源机制解、钻孔崩落、钻孔诱发张裂隙、钻孔槽、套芯解除、水压致裂、断层活动7个地应力指标。符号长度和颜色分别对应数据质量评价结果(质量越好则符号越大)和数据指示的应力机制(即应力状态,红色为正断层,绿色为走滑断层,蓝色为逆断层,黑色为不确定性断层)。
地应力图中应力符号较复杂,需考虑方位指向性,GMT自带的部分标准几何符号(图 2)无法直接表示应力符号,因此本文利用GMT宏语言环境下的自定义符号技术设计7个独立的符号文件filename.def,用于生成上述7个应力指标符号。设计过程包括单个符号文件的设计、自定义符号的传参技术、自定义符号的表达。
2.1 单个符号文件(filename.def)的设计
自定义符号文件(后缀为.def)实质上是在宏语言的环境中创建的。符号文件中存储多行宏命令,可将多个独立要素重组为复杂的自定义符号。每行命令格式为“参数代码”,表示绘制点、线、面等独立要素,其中“参数”定义了要素的坐标、尺寸、角度等信息(如圆的参数为x y size),“代码”表示绘制要素的类型(如圆的代码为c)。“参数”和“代码”之间以空格或逗号分隔,如应力指标震源机制解符号由直线和圆重组而成(见图 3(a)),其符号文件focal_mec.def的命令结构为:
0 0 1 y-W2p
0 0 0.2c-Gblack
其中第1行表示以(0,0)为中心坐标,画长度为1、粗细为2个像素的竖直线(代码为y);第2行表示以(0,0)为圆心坐标,画直径为0.2、填充色为黑色的圆(代码为c)。
GMT提供各类宏命令用于自定义符号的绘制,且支持各种复杂符号样式的组合绘制。自定义符号语言中可用的部分绘图命令如表 1所示,利用以上原理,本文设计的7个应力指标符号如图 3(b)所示。
表 1 自定义符号语言中可用的部分绘图命令Table 1. Some drawing commands available in symbolic languages名称 代码 目的 参数 旋转 R 旋转坐标系 ${\rm{ \mathsf{ α} [a]}}$ 圆形 c 画圆 $ \rm{x},\rm{y},\rm{size}$ 菱形 d 画菱形 $ \rm{x},\rm{y},\rm{size}$ 六边形 h 画六边形 $ \rm{x},\rm{y},\rm{size}$ 倒三角形 i 画倒三角形 $ \rm{x},\rm{y},\rm{size}$ 文字 l 添加文字 $ \rm{x},\rm{y},\rm{string}$ 绘制矩形 r 绘制矩形 $ \rm{x},\rm{y},\rm{windth},\rm{heigth}$ 正方形 s 绘制正方形 $ \rm{x},\rm{y},\rm{size}$ 正三角形 t 绘制正三角形 $ \rm{x},\rm{y},\rm{size}$ 十字架 x 绘制一个十字架 $ \rm{x},\rm{y},\rm{size}$ x轴上的线段 - 在x轴上绘制线段 $ \rm{x},\rm{y},\rm{size}$ y轴上的线段 y 在y轴上绘制线段 $ \rm{x},\rm{y},\rm{size}$ 2.2 自定义符号传参技术
根据前文所述的符号文件设计原理绘制出的符号较单一,不具备任何角度信息。而方位指向性恰恰是应力符号的本质特征,用于反映研究区域水平最大主应力的优势分布。因此本文需使用自定义符号传参技术,即引入“符号变量”将水平最大主应力方位角赋予符号自身。
“符号变量”在宏语言环境下由指令“N”定义,其在filename.def文件中的命令格式为“N:n[types]”,其中n为符号变量个数;types为指令N定义的符号变量类型,包括$ \rm{a}、\rm{l}、\rm{r}、\rm{s}、\rm{o}$,分别表示地理方位角、符号长度、旋转角度、字符串类型、其他类型。仍以应力指标震源机制解符号为例,在focal_mec.def中宏命令前添加以下语句:
N:1 a
$1 R
-90 R
“N:1 a”表示该文件定义了1个符号变量,类型为方位角;“$1 R”表示引用第1个变量值旋转坐标系;“-90 R”表示将默认的笛卡尔坐标系逆时针旋转90°到地理坐标系。
2.3 应力符号的表达
创建好的符号文件被放入GMT脚本所在的文件夹中,由模块psxy调用绘制符号,其调用格式为-Sk filename/size,其中filename为符号文件名,size表示符号大小,符号颜色直接由-G选项决定,红色对应正断层,绿色对应走滑断层,蓝色对应逆断层。如应力指标震源机制解符号的方向分别为45°、100°、120°,应力数据质量分别为C、B、A,应力状态分别为正断层、逆断层、走滑断层。应力方向、数据质量及应力状态在表达效果上如图 4所示。
2.4 GMT脚本绘制应力图总流程
以龙门山应力区为例,在Windows平台使用GMT5.4.5绘制应力图的总流程如下(其中数据源采用世界应力图计划发布的WSM2016数据库):
(1)添加地理数据
rem绘制地形底图
gmt psbasemap-R101.2/106/29.5/33.5-JM5i-Ba-K > stressmap.ps
gmt grdimage-R-J earth_relief_ 30s.grd-Cglobe-I-K-O > > stressmap.ps
rem绘制省界
gmt psxy CN-border-La.dat-J-R-W0.5p-O-K > > stressmap.ps
rem添加震中所在的省会城市
gmt psxy CN-capitals.dat-J-R-Sa0.3c-W0.2p, black-Gred-K-O > > stressmap.ps
gmt pstext CN-capitals.dat-J-R-F+f14p, 39, red+j-Dj0.15c/0.15c -K-O > > stressmap.ps
rem绘制市名市界
gmt psxy %CITY%-R%R%-J%J%-W0.25p, 100-O-K > > stressmap.ps
gmt pstext %CITYNAME%-R%R%-J%J%-D0/0.2-F+f7, 39, gray50 -O-K > > stressmap.ps
为直观表达应力区地理信息,本例添加了地形数据、省市边界数据等。绘制地形图采用30s高精度网格数据earth_relief_30s.grd,地形图颜色由色标文件globe控制。
(2)添加应力符号
rem绘制应力符号
gawk-F, "{if($3~/FM./ & & ($6==\"C\") & & ($4 == \"TF\" || $4 == \"TS\")) print $2, $1, $5}" stress_data_longmenshan.csv | gmt psxy-R-J-Skfocal_mec/1-W0.5p, blue-Gblue-K-O > > stressmap.ps
rem绘制断层线
gmt psxy XuFault.gmt-R-J-Sqd3c:+Lh+f11, STHeiti-Regular--GB-EUC-H-W0.5p, red-O-K > > stressmap.ps
stress_data_longmenshan.csv为龙门山断裂带区域应力数据表,数据格式如表 2所示,表 2中共有6列数据,分别为纬度、经度、应力指标类型、应力状态、水平最大主应力方位、数据质量。
表 2 应力数据Table 2. Stress dataLAT LON TYPE REGIME S1AZ 32.500 104.3 FMS TS 108 C 31.500 104.0 FMS TF 116 C 31.155 103.7 BO TF 121 C … … … … … … gawk是在Windows下使用的数据处理工具,在此处用于筛选应力指标类型为震源机制解(代码为FMA、FMF、FMS)、应力状态为逆断层(代码为TF、TS)、应力数据质量为C的资料,并传递给GMT绘图模块psxy,由选项-Sk调用符号文件绘制应力符号。应力符号方向、大小、颜色分别对应水平最大主应力方位、数据质量和应力状态,应力符号的样式与图 1所示的国际标准保持一致。
另外,本文为增强龙门山区域应力状态可视度,添加了断层线(以红色标记)包括重要断层的名称(如文县断裂),其中断层数据由中国地震局地质研究所活动断层探测数据汇交与共享管理中心提供(徐锡伟等,2016)。
3. GMT应力图绘制的结果与分析
本文通过GMT自定义符号技术解决了用户制作应力场分布图时绘制应力符号的难题,实现了在Windows10系统下使用GMT5.4.5绘制符合标准的应力场分布图(图 5)。相比国内其他学者(张红艳等,2013)通过传统方式绘制的应力图(图 6)和WSM可视化工具CASMO(http://www.world-stress-map.org/casmo/)在线绘制的应力图(图 7、图 8),本文使用GMT绘制应力图的方法在绘图技巧和信息表达效果上均有所提高。
3.1 绘图灵活
在相同的应力数据背景下,与CASMO在线绘制网站相比,GMT软件在绘图方式上具有更强的灵活性。
(1)CASMO界面信息主要包括应力数据的筛选、绘图区域设置、投影方式、图例位置及输出格式(图 8)。优点是模板固定、出图快,缺点是无法灵活添加其他自定义数据。虽然CASMO底层依然调用了GMT,但将其封装为可交互式网页,降低了GMT脚本式绘图的灵活度,图 5所示的地形、断层等图层信息的直观表达在CASMO模板下无法实现。
(2)由于CASMO模板已固定,图形涉及的具体细节不易控制,如图 7中坐标轴刻度间隔、底图颜色等常规地图属性设置过于简单。而GMT是纯命令行,所有绘图操作均由命令实现,不仅执行效率高,且能精确控制图形显示,如线条属性、坐标轴设置、画笔属性等。
3.2 信息丰富
相比国内传统方式,本文使用GMT绘制的应力图在信息表达上更直观,具体体现在以下方面:
(1)比较图 5、图 6中的应力分布情况可知,图 5数据分布较密集,经统计达231条记录,其中震源机制解数据211个,比例高达91%,可有效反映地壳深部应力信息。而图 6中显示的数据共86个,其中震源机制解为31个(张红艳等,2013)。出现此现象的原因可能是图 6数据是从中国大陆地壳应力环境基础数据库(谢富仁等,2004)中筛选出来的,而该基础数据库中震源机制解的地震发震时间为1920—2005年,距离芦山地震有近8年的历史地震震源机制解缺失。
(2)相比图 6中大小一致的应力符号,图 5中的符号有大小之分,符号越大代表应力数据的质量越好。应力符号的规格设计可帮助用户直观区分不同指标类型的应力数据质量。
(3)图 6中的应力符号仅具有方向性,而图 5中的应力符号除含有方向、大小的意义外,其颜色的分布还可直观表达研究区域应力状态,如图中红色表示正断层,绿色表示走滑断层,蓝色表示逆断层,黑色表示不确定性,4种断层类型是由构造应力方位的空间取向定义的(Zoback,1992)。龙门山应力区覆盖范围内的断层类型统计如表 3所示,逆断层和走滑断层占比较大,表明该断裂带发生的地震以逆冲型、走滑型为主。
表 3 龙门山应力区断层类型统计Table 3. Statistic of fault types in Longmen mountain stress area项目 正断层 逆断层 走滑断层 不确定型 断层数目(条) 12 113 105 1 占总断层数目百分比(%) 5% 49% 45% 1% 4. 地应力图的自动产出
为简化应急产品绘制程序,避免由人工编辑与整理带来的信息错漏、时间效率低等问题,亟须实现地震科学产品的自动化产出与发布。为此本文在自定义符号技术研究的基础上,使用C#语言与GMT脚本联合编程,实现了地震区域构造应力场应急产品的智能化产出。目前该技术已应用于由中国地震台网中心主导、湖北省地震局开发的《震后趋势判定技术系统》中。
此系统可由震情自动触发或人工输入地震参数手动触发,自动产出地震应急产品。除本文提到的地应力图外,还包括震中分布图、震中附近历史震源机制、震中附近地震序列类型、历史地震活动统计等震情会商产品。最终产品在一定权限控制下以Word版和PPT版的形式发布,推送到服务器及微信客户端上(图 9)。
为了更好地与已有研究结果进行对比,本文以2013年4月20日芦山7.0级地震为例,手动输入参数触发系统。该系统自动生成的芦山地震周边构造应力场图件如图 10所示,除区域应力场分布图外,还包括优势方位玫瑰花样图及主应力轴空间取向图。由优势方位玫瑰花样图可知,水平最大主应力分布大体符合已有研究(张红艳等,2013)计算的龙门山应力区最大主应力方向。结合应力分布图和主应力轴空间取向分析,该断裂带为大型逆冲断层,以近EW向挤压、近NS向拉张为主要特征,与已有研究结论一致(崔进业,2018;张红艳等,2013;张红艳,2015)。
震后趋势判定技术系统已于2018年10月开始试运行,至今仍在不断维护与更新中,在地震趋势会商研判会上发挥了重要作用。
5. 结论
使用GMT绘制地应力图解决了用户依赖商业软件单机模式生成地应力图产品带来的滞后性、封闭性、复杂性等问题,本文研究成果可总结为以下几点:
(1)利用GMT自定义符号传参技术,本文创建了7个地学界通用应力指标符号标准的符号文件,既保证了脚本绘图的灵活性,又实现了地应力数据可视化表达的丰富性。
(2)通过调研国内外地应力分布图的符号模式和制图要素规范,本文设计了完整的地应力场GMT绘图流程,用于地震应急产品的生产。使用人员可在完全不了解GMT命令的情况下替换图层数据,生成制图规范、要素完整的地应力场应急产品。
(3)本文将地应力场图的绘制成果集成到《震后趋势判定技术系统》中,在一定程度上降低了人工处理图件信息的出错率,提高了震中区域构造应力场图等地震应急产品的智能处理程度,已应用于地震趋势会商工作中。
致谢: 感谢世界地应力图WSM2016为本研究提供应力数据支持,感谢GMT中文社区为本研究提供省市边界数据支持,感谢SRTM为本研究提供地形数据支持,感谢中国地震局地质研究所活动断层探测数据汇交与共享管理中心为本研究提供数据支持。 -
表 1 在役隧道震害综合承灾度评价指标体系与分级标准
Table 1. Evaluation index system and grading standard of comprehensive hazard-bearing degree of earthquake damage of in-service tunnels
属性 评价指标 等级 定性描述 定量描述 压力指标 地震峰值加速度C1 Ⅰ 基本烈度<6度 C1<1 Ⅱ 基本烈度6~7度 1≤C1<1.8 Ⅲ 基本烈度7~8度 1.8≤C1<2.6 Ⅳ 基本烈度8~9度 2.6≤C1<3.4 Ⅴ 基本烈度>9度 C1≥3.4 断裂破碎带宽度C2 Ⅰ 无断层 0 Ⅱ 存在落差20 m以下的小规模断层 0<C2≤20 Ⅲ 存在落差20 m以上、30 m以下的较小规模断层 20<C2≤30 Ⅳ 存在落差30 m以上、50 m以下的中等规模断层 30<C2≤50 Ⅴ 存在落差50 m以上的大规模断层 C2>50 岩石风化程度C3 Ⅰ 完好 0 Ⅱ 微风化 0<C3≤25 Ⅲ 中等风化 25<C3≤50 Ⅳ 强风化 50<C3≤75 Ⅴ 全风化 75<C3≤100 地下水情况C4 Ⅰ 无地下水 0 Ⅱ 点滴状地下水 0<C4≤3 Ⅲ 淋雨状地下水 3<C4≤6 Ⅳ 线状地下水 6<C4≤10 Ⅴ 涌流状地下水 10<C4≤12 偏压(地表倾角)C5 Ⅰ <15° C5<15 Ⅱ 15°~30° 15≤C5<30 Ⅲ 30°~45° 30≤C5<45 Ⅳ 45°~60° 45≤C5<60 Ⅴ >60° C5≥60 承压指标 围岩等级C6 Ⅰ 稳定岩石,裂隙不发育或稍发育 C6>4.5 Ⅱ 岩石较新鲜,节理裂隙稍发育 3.5≤C6<4.5 Ⅲ 岩石微风化,地质裂隙发育、部分张开充泥 2.5≤C6<3.5 Ⅳ 软弱结构面多,岩体呈碎石状 1.5≤C6<2.5 Ⅴ 散体 C6<1.5 支护结构与强度C7 Ⅰ 完好 C7>150 Ⅱ 较好 100≤C7<150 Ⅲ 中等 50≤C7<100 Ⅳ 较差 10≤C7<50 Ⅴ 很差 C7<10 隧道埋深C8 Ⅰ 埋深>300 m C8>300 Ⅱ 埋深100~300 m 100<C8≤300 Ⅲ 埋深50~100 m 50<C8≤100 Ⅳ 埋深10~50 m 10<C8≤50 Ⅴ 埋深<10 m C8≤10 承压指标 岩体完整性C9 Ⅰ 完整性好 0.90≤C9<1 Ⅱ 完整性较好 0.75≤C9<0.90 Ⅲ 完整性中等 0.50≤C9<0.75 Ⅳ 完整性较差 0.20≤C9<0.50 Ⅴ 完整性差 0≤C9<0.20 岩石质量C10 Ⅰ 岩石质量好 90<C10≤100 Ⅱ 岩石质量较好 75<C10≤90 Ⅲ 岩石质量中等 50<C10≤75 Ⅳ 岩石质量较差 25<C10≤50 Ⅴ 岩石质量差 C10≤25 路面与附属设施
易损程度C11Ⅰ 完好 0<C11≤2 Ⅱ 无明显受损 2<C11≤4 Ⅲ 受损小于限值 4<C11≤6 Ⅳ 受损接近限值 6<C11≤8 Ⅴ 受损大于限值 8<C11≤10 等效截面积C12 Ⅰ 存在面积<20 m2的小断面 C12<20 Ⅱ 存在面积20~45 m2的较小断面 20≤C12<45 Ⅲ 存在面积45~70 m2的中等断面 45≤C12<70 Ⅳ 存在面积70~120 m2的较大断面 70≤C12<120 Ⅴ 存在面积>120 m2的大断面 C12≥120 表 2 隧道震害数据统计结果
Table 2. Statistical table of tunnel seismic damage data
类别 拟评价项目 C1 /g C2 /m C3 C4 C5 /(°) C6 C7/MPa C8 /m C9 C10 /% C11 C12 /m2 区段1 2.2 0 0 0 8 1.80 75 108 0.80 81 3.0 47.8 区段2 2.2 25 60 8.0 35 1.40 15 30 0.30 22 5.0 47.8 区段3 2.2 20 40 2.0 45 1.60 40 22 0.55 45 6.5 47.8 区段4 2.0 15 35 1.5 20 2.40 55 324 0.80 45 5.5 38.5 区段5 1.9 40 10 2.5 50 2.40 55 331 0.40 41 5.0 23.7 正理想值 0.5 0 0 0 7.5 5.00 175 400 0.95 95 1.0 10.0 负理想值 3.8 60 87.5 11.5 72.5 0.75 5 5 0.10 12.5 9.0 132.5 表 3 评价指标的权重
Table 3. Weights of evaluation indicators
类别 权重 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 ${\omega '_k}$ 0.188 0.088 0.044 0.118 0.075 0.111 0.057 0.051 0.082 0.061 0.068 0.057 ${\omega ''_k}$ 0.001 0.179 0.224 0.288 0.087 0.004 0.005 0.056 0.074 0.047 0.017 0.018 ${\omega ^ * }$ 0.089 0.137 0.140 0.208 0.082 0.054 0.030 0.053 0.077 0.053 0.041 0.036 表 4 评价指标统计数据的标准化处理
Table 4. Standardized processing of evaluation index statistics
类别 指标 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 区段1 0.476 1.000 1.000 1.000 0.893 0.327 0.375 0.216 0.800 0.810 0.700 0.670 区段2 0.476 0.643 0.400 0.333 0.533 0.255 0.075 0.060 0.300 0.220 0.500 0.670 区段3 0.476 0.714 0.600 0.833 0.400 0.291 0.200 0.044 0.550 0.450 0.350 0.670 区段4 0.524 0.786 0.650 0.875 0.733 0.436 0.275 0.648 0.800 0.450 0.450 0.734 区段5 0.548 0.429 0.900 0.792 0.333 0.436 0.275 0.662 0.400 0.410 0.500 0.837 正理想值 0.881 1.000 1.000 1.000 0.900 0.909 0.875 0.800 0.950 0.950 0.900 0.931 负理想值 0.095 0.143 0.125 0.042 0.033 0.136 0.025 0.010 0.100 0.125 0.100 0.086 -
鲍学英, 张健, 王起才, 2019. 西北寒旱地区铁路绿色施工等级评价研究. 铁道学报, 41(3): 33—39 doi: 10.3969/j.issn.1001-8360.2019.03.005Bao X. Y. , Zhang J. , Wang Q. C. , 2019. Study on grade evaluation of green railway construction in northwest cold and arid areas. Journal of the China Railway Society, 41(3): 33—39. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.005 冯志泽, 胡政, 何钧等, 1994. 建立城市自然灾害承灾能力指标的思路探讨. 灾害学, (4): 40—44Feng Z. Z. , Hu Z. , He J. , et al. , 1994. A preliminary study on establishing the index of bearing-disaster capability of natural disasters in city. Journal of Catastrophology, (4): 40—44. (in Chinese) 耿萍, 吴川, 唐金良等, 2012. 穿越断层破碎带隧道动力响应特性分析. 岩石力学与工程学报, 31(7): 1406—1413 doi: 10.3969/j.issn.1000-6915.2012.07.013Geng P. , Wu C. , Tang J. L. , et al. , 2012. Analysis of dynamic response properties for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1406—1413. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.013 何健, 2009. 都汶公路隧道震害评估及修复研究. 成都: 成都理工大学.He J., 2009. Research on the damage evaluation and repair technology of Dujiangyan-WenChuan highway tunnels. Chengdu: Chengdu University of Technology. (in Chinese) 中华人民共和国交通运输部, 2013. JTG B02—2013 公路工程抗震规范. 北京: 人民交通出版社.Ministry of Transport of the People's Republic of China, 2013. JTG B02 -- 2013 Seismic Code for highway engineering. Beijing: People's Communications Press. 中华人民共和国交通运输部, 2015. JTG H12—2015 公路隧道养护技术规范. 北京: 人民交通出版社股份有限公司.Ministry of Transport of the People's Republic of China, 2015. JTG H12—2015 Technical Specification for Maintenance of Highway Tunnels. Beijing: People's Communications Press Co., LTD. 刘东, 龚方华, 付强等, 2017. 基于博弈论赋权的灌溉用水效率GRA-TOPSIS评价模型. 农业机械学报, 48(5): 218—226 doi: 10.6041/j.issn.1000-1298.2017.05.027Liu D. , Gong F. H. , Fu Q. , et al. , 2017. Evaluation model of irrigation water use efficiency based on game theory and GRA-TOPSIS. Transactions of the Chinese Society for Agricultural Machinery, 48(5): 218—226. (in Chinese) doi: 10.6041/j.issn.1000-1298.2017.05.027 孙强强, 薄景山, 孙有为等, 2016. 隧道结构地震反应分析研究现状. 世界地震工程, 32(2): 159—169Sun Q. Q. , Bo J. S. , Sun Y. W. , et al. , 2016. A state-of-the-art review of seismic response analysis of tunnels. World Earthquake Engineering, 32(2): 159—169. (in Chinese) 叶清, 2003. 地震危险性、地震危害性和地震易损性. 福建地震, (2): 38—40Ye Q. , 2003. Seismic risk, seismic hazard and seismic friability. Fujian Seismology, (2): 38—40. (in Chinese) 臧万军, 2017. 汶川地震公路隧道震害规律研究. 现代隧道技术, 54(2): 17—25 doi: 10.13807/j.cnki.mtt.2017.02.003Zang W. J. , 2017. Damage to highway tunnels caused by the Wenchuan earthquake. Modern Tunnelling Technology, 54(2): 17—25. (in Chinese) doi: 10.13807/j.cnki.mtt.2017.02.003 翟强, 顾伟红, 2020. 基于EW-AHP和未确知测度理论的隧道坍塌风险评价. 安全与环境工程, 27(5): 92—97 doi: 10.13578/j.cnki.issn.1671-1556.2020.05.014Zhai Q. , Gu W. H. , 2020. Risk assessment of tunnel collapse by EW-AHP and unascertained measure theory. Safety and Environmental Engineering, 27(5): 92—97. (in Chinese) doi: 10.13578/j.cnki.issn.1671-1556.2020.05.014 周建昆, 吴坚, 2008. 岩石公路隧道塌方风险事故树分析. 地下空间与工程学报, 4(6): 991—998 doi: 10.3969/j.issn.1673-0836.2008.06.001Zhou J. K. , Wu J. , 2008. Fault tree analysis of the collapse risk in rock highway tunnel. Chinese Journal of Underground Space and Engineering, 4(6): 991—998. (in Chinese) doi: 10.3969/j.issn.1673-0836.2008.06.001 朱捷, 曾国伟, 胡国忠等, 2019. 基于事故统计分析的隧道坍塌施工安全风险评估. 公路交通科技(应用技术版), 15(9): 237—240. Hashash Y. M. A. , Hook J. J. , Schmidt B. , et al. , 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): 247—293. doi: 10.1016/S0886-7798(01)00051-7 Kuesel T. R. , 1969. Earthquake design criteria for subways. Journal of the Structural Division, 95(6): 1213—1231. doi: 10.1061/JSDEAG.0002292 Yashiro K. , Kojima Y. , Shimizu M. , 2007. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake. Quarterly Report of RTRI, 48(3): 136—141. doi: 10.2219/rtriqr.48.136 -