• ISSN 1673-5722
  • CN 11-5429/P

柴达木块体内部都兰南断裂晚第四纪活动特征

盖海龙 姚生海 殷翔 苏旭 刘炜

吴家熠, 林均岐, 刘金龙. 汶川地震道路破坏机理浅析[J]. 震灾防御技术, 2020, 15(3): 526-536. doi: 10.11899/zzfy20200306
引用本文: 盖海龙,姚生海,殷翔,苏旭,刘炜,2023. 柴达木块体内部都兰南断裂晚第四纪活动特征. 震灾防御技术,18(2):261−273. doi:10.11899/zzfy20230207. doi: 10.11899/zzfy20230207
Wu Jiayi, Lin Junqi, Liu Jinlong. Analysis of Road Destruction Mechanism of Wenchuan Earthquake[J]. Technology for Earthquake Disaster Prevention, 2020, 15(3): 526-536. doi: 10.11899/zzfy20200306
Citation: Gai Hailong, Yao Shenghai, Yin Xiang, Su Xu, Liu Wei. The Late Quaternary Activity Characteristics of the Dulan South Fault in the Qaidam Block[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 261-273. doi: 10.11899/zzfy20230207

柴达木块体内部都兰南断裂晚第四纪活动特征

doi: 10.11899/zzfy20230207
基金项目: 中国地震局地震科技星火计划项目(XH20061Y);青海省中青年科技人才托举工程(2022QHSKXRCTJ49)
详细信息
    作者简介:

    盖海龙,男,生于1988年。工程师。主要从事活动构造及其工程应用方面的工作。E-mail:nwuhailong@sina.cn

    通讯作者:

    姚生海,男,生于1980年。高级工程师。主要从事活动构造和古地震研究等方面的工作。E-mail:shenghaiyao@sina.com

The Late Quaternary Activity Characteristics of the Dulan South Fault in the Qaidam Block

  • 摘要: 青藏高原是新生代期间印度与欧亚板块持续强烈陆陆碰撞作用下形成的陆内活动造山带,发育了复杂的活动断裂系统,并成为东亚显著的陆内强震活动区。已有学者对高原活动断裂的研究多集中于地块边界带上,缺少对块体内部变形的研究。近期在开展青海省海西州都兰县察汗乌苏镇地震小区划工作中,调查发现在柴达木地块东南部的都兰次级断块内部存在明显的晚第四纪活断层−都兰南断裂。通过对都兰南断裂开展详细的野外地质调查、高分辨率遥感影像解译和无人机低空摄影精细测量等,得到该断裂的构造地貌特征、空间几何展布及运动特性,并通过开挖探槽和地质测年等,对其最新活动时代及滑动速率等进行初步约束。研究结果表明,该断裂为全长约43 km、全新世活动的左旋走滑断裂,并在其东段存在长约6 km的地表破裂带。在该断裂东段,地表的晚第四纪累积左旋位移达(14.5±1.8)m,西段的左旋走滑量为(6.7±0.8)m,初步估算其东段的水平走滑速率为1.56~1.9 mm/a,西段的水平走滑速率为0.9~1.16 mm/a。该断裂的发现及全新世活动的厘定表明,青藏高原内部活动构造变形样式复杂,断块内部通常存在不同程度的弥散变形。因此,断块内部的强震危险性不容忽视。该活动断裂的发现为认识都兰次级断块内部变形样式、应变分配等提供了参考,为都兰地区地震危险性的认知提供了支撑,对防御和减轻区域地震灾害风险具有一定指导意义。
  • 道路是生命线系统的重要组成部分,道路系统不仅对国民经济发展至关重要,也是灾区震后得以及时救援和恢复重建的保障(刘金龙等,2013)。至2019年,中国公路总里程居世界第一,共484.7万km,其中高速公路达14.3万km,汶川地震灾区范围内公路总里程达62671km(刘爱文等,2008),受损公路总里程达31412km,近一半的公路受损,仅道路破坏带来的直接经济损失高达612亿。对地震引起的道路破坏机理进行分析,了解道路震害影响因素,从而针对特定的地质条件修复和加固道路,对提高道路抗震水平和震后恢复具有重要的现实意义(王伟等,2014顾全等,2017李帅等,2017)。

    周德培等(2010)结合工程震害实例,根据震害现象分析各类边坡和相应支挡结构的震害机制;陈乐生(2012a)通过对汶川地震公路震害的调查统计,得到了地基条件、地基类型、所在位置、道路、断裂带等因素与路基破坏的关系;胡衡(2018)总结了路基、支挡结构和边坡震害,并给出了发生道路震害的主要因素。目前,关于道路震害分析的研究大都仅给出导致道路震害的主要因素。

    本文选取道路构件(挡土墙、边坡和路基路面)典型破坏现象,分析和总结相应的震害特点,并将道路构件震害按破坏形式进一步将挡土墙分为墙身破坏和倾斜破坏两类;根据边坡坡度和岩石类型,将其分为崩塌型滑坡和塌陷滑移型滑坡两类;路基发生永久变形的三种情况,包括路基差异沉降、路堤边坡失稳、断层破裂引起的差异位移。总结每类破坏形式的常见工程和自然条件,讨论地震动导致道路构件破坏的原因,可加深对公路系统震损特征的了解,有利于提高道路抗震能力和震后恢复能力。

    挡土墙指用于支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。地震直接作用引起的挡土墙破坏包括垮塌、墙身剪断、整体倾斜、倾覆、开裂变形,挡土墙震害现象如图 1-7中华人民共和国交通运输部等,2009陈乐生,2012a),地震的间接破坏由次生灾害(如滑坡、土体崩塌等)导致挡土墙被掩埋或砸坏,所以可认为间接破坏的挡土墙是由边坡破坏引起的。汶川地震中挡土墙震害现象包括垮塌、墙身剪断、整体倾斜、倾覆、开裂变形、挡土墙被掩埋或砸坏等。

    图 1  挡土墙倾斜
    Figure 1.  Retaining wall inclined
    图 2  挡土墙中部剪切破坏
    Figure 2.  The middle of the retaining wall was clipped
    图 3  挡土墙开裂
    Figure 3.  Retaining wall cracked
    图 4  浆砌挡土墙鼓胀裂缝
    Figure 4.  Bulging cracks in mortar retaining wall
    图 5  挡土墙倾斜
    Figure 5.  Retaining wall inclined
    图 6  挡土墙外倾
    Figure 6.  Retaining wall inclined
    图 7  路基滑移挡土墙垮塌
    Figure 7.  The subgrade slip lead to retaining wall collapsed

    汶川地震中,烈度为Ⅵ-Ⅺ度的调查地区存在395处挡土墙破坏(陈乐生,2012a),直接破坏的震害数存在364处,占总震害数的92.2%,间接破坏的震害数仅占总震害数的7.8%。在直接破坏的挡土墙中,垮塌、墙身剪断、开裂变形破坏存在291处;73处为挡土墙倾斜破坏,所以按挡土墙墙身结构是否破坏分为挡土墙因荷载过大导致承载力不足而产生的墙身结构破坏和挡土墙整体倾斜或倾覆。

    挡土墙垮塌、中部剪断、开裂和鼓胀裂缝均使墙身结构发生了破坏。不同砌筑方式挡土墙破坏数量调查结果显示,汶川地震调查的405处挡土墙震害中,发生破坏的浆砌挡土墙占80%,发生破坏的混凝土挡土墙占17%,发生破坏的干砌挡土墙占2%,发生破坏的其他类型挡土墙占1%。干砌挡土墙在汶川地震中普遍发生了破坏,仅部分浆砌挡土墙基本完好,可知干砌和浆砌挡土墙是挡土墙墙身破坏的主要类型。根据各地震烈度下挡土墙破坏数量统计结果(图 8),可知随着地震烈度的增大,挡土墙破坏数量呈增多的趋势,且破坏主要集中于高烈度区,Ⅷ度区挡土墙破坏数量少于Ⅶ度区,Ⅷ度区挡土墙数量少,且多为混凝土挡土墙,这说明混凝土挡土墙抗震性能较浆砌和石砌挡土墙好。

    图 8  地震烈度下挡土墙破坏数量
    Figure 8.  Damage quantity of retaining wall at different intensities

    对浆砌和石砌挡土墙抗震性能进行分析,由于挡土墙墙身结构破坏是由挡土墙结构构件承受的应力过大引起的,如果重力式混凝土挡土墙结构设计恰当,对于静态荷载承载力计算,一般取荷载系数为1.7,因此对于一般强度的地震动,挡土墙不会发生墙身结构破坏,除非挡土墙内部存在缺陷(如截面不足、施工缝不良和缺乏加强内部支撑)。以浆砌、石砌施工方法修筑的挡土墙,在石块间的砂浆位置易形成软弱区,整体性较差,是墙身破坏的主要原因,山区挡土墙施工质量较差也是墙身易破坏的原因。

    综上可知,在地震的反复作用下,挡土墙在结构缺陷部位形成裂缝,对于浆砌挡土墙,存在多处软弱部位,易发生墙面大面积开裂、鼓胀和隆起。随着地震动强度的增大,混凝土挡土墙裂缝处的抗剪切力不足抵抗裂缝上部的土压力,直接使挡土墙被剪断,而浆砌、干砌挡土墙因砂浆材料的全面屈服整体垮塌。

    挡土墙发生倾斜破坏时墙身整体结构较好,破坏特征为顶部位移过大,整体失稳。调查结果显示(陈乐生,2012a),挡土墙倾斜震害发生在岩石地基上的仅占22.4%,发生在土质地基上的高达58.4%,在119处路肩墙破坏结果中,挡土墙未在岩质地基上发生过度倾斜或倾覆破坏。由此可知,相比岩石地基,在土质地基上挡土墙更易发生破坏。考虑土质地基承载力较低,地震发生后挡土墙墙趾位置处的土压力增大,土质地基易发生变形,因此导致土质地基上的挡土墙更易发生滑移和倾斜破坏。

    挡土墙试验证明(杨长卫等,2015),随着地震强度的增大,挡土墙背后土压力分布不均匀,土压力强度基本与加速度成正比,从整体土压力分布规律来看,加速度越大,土压力分布越接近三角形。这可能是因为挡土墙上部约束少,更易产生位移,而挡土墙下部被土体约束,位移小,上部产生位移后,下部将受到更大的土压力。对于高烈度区的地震动峰值加速度,当挡土墙正面墙趾处土压力不足时,挡土墙在墙背主动土压力作用下发生滑移;当挡土墙正面墙趾处土压力足够时,导致墙体内、墙趾和墙踵处弯矩显著增加,发生倾斜破坏。墙身高度对挡土墙破坏的影响见表 1,由长度占比可知,随着高度的增加,挡土墙越易发生破坏(图 4),这说明地震作用在挡土墙背后填土上时,挡土墙越高,地震惯性力的放大效应越明显,转动力矩越大。对于结构完好的挡土墙,随着地震强度的增大,挡土墙墙身越高,其上部位移越易积累,因而导致挡土墙发生倾斜甚至倾覆破坏。

    表 1  G213都映高速挡土墙破坏情况
    Table 1.  The damage situation of retaining wall on highway G213 from Dujiangyan to Yingxiu
    挡土墙墙身高度/m 总长度/m 破坏长度/m 破坏长度占比/%
    <6 3784.4 1131.5 0.299
    6-8 3217.9 1030.0 0.320
    8-10 1259.4 537.6 0.427
    >10 488.2 229.0 0.469
    下载: 导出CSV 
    | 显示表格

    汶川地震中,由边坡破坏造成多处交通堵塞,地震诱发滑坡和路堤失稳已引起公路系统大规模瘫痪,这种破坏不仅造成严重的直接经济损失(赵纪生等,2008),且阻塞道路,冲击和掩埋车辆,滑坡滚落的岩石将路基路面和挡土墙砸坏,对震后抢修造成了极大困难。汶川地震造成的典型边坡破坏现象如图 9-13所示(徐锡伟,2009)。

    图 9  边坡崩塌掩埋公路
    Figure 9.  The slope collapsed to bury the highway
    图 10  落石砸坏路基
    Figure 10.  The falling stone damaged the roadbed
    图 11  崩塌滑坡和落石
    Figure 11.  Collapse landslides and falling rocks
    图 12  边坡崩塌掩埋公路
    Figure 12.  The slope collapsed and buried the road
    图 13  塌陷滑移掩埋公路
    Figure 13.  Subsidence slippage buried highway

    对发生破坏的边坡岩土类型进行调查,结果见表 2,由表 2可知岩质更易发生边坡震害。边坡坡度与震害数量的关系如图 14所示,由图 14可知,随着坡度的增加,边坡损坏数量显著增加,在坡度>45°的陡坡上,边坡震害较集中。边坡震害现象表明边坡地形结构与边坡破坏规模具有很大关系。综上分析,边坡岩土类型、边坡坡度、地形结构等因素对汶川地震边坡震害的影响较大,根据不同震害现象,按边坡震害形成模式分为崩塌型滑坡和塌陷滑移型滑坡。

    表 2  边坡岩土类型与震害数量
    Table 2.  Types of slope rock and quantity of earthquake damage
    边坡岩土类型 震害数量/个 占比/%
    岩质 251 47.0
    土质 154 28.8
    上层土质下层岩质 129 24.2
    下载: 导出CSV 
    | 显示表格
    图 14  边坡坡度与震害数量关系
    Figure 14.  Distribution of seismic damage and slope gradient

    崩塌型滑坡指岩石土体在自重或地震等其他作用下从陡峭山坡急速下落,有时伴随着破碎岩体沿边坡大规模下落现象。由图 9-12所示边坡情况可知,此类边坡破坏规模普遍较大,属浅层岩石破坏,发生在边坡较高的位置,且发生在坡度>45°的陡坡上。较坚硬的岩石易形成较大的陡坡,这些陡坡岩石属于硬性岩石。地震发生后,边坡上的岩石沿边坡下落至地面,形成堆积阻塞,掩埋道路(图 10图 12)。玄武岩和花岗岩等发育良好的岩石,部分岩体甚至重心外伸,且风化程度严重、岩石间胶结强度弱,在地震作用下,因风化或雨水侵蚀存在薄弱部位的岩体进一步开裂,从陡坡滑落或坠落,较大的岩体形成落石(图 11)。

    调查发现,震中附近约150m高的水坝记录到峰值加速度高达1.5g-2.0g,而相同地点水坝底地震动峰值加速度较小,高差悬殊、斜坡山脊等地形对地震动的放大效应更明显。此外,考虑震中区较长时间的强震动作用,分析认为强震动作用时间长也是震中区边坡发生严重破坏的原因。综上可知,地震对边坡具有以下影响:①边坡地带对地震动有放大效应,尤其是陡峭的斜坡;②强震作用时间越长,坡体破裂越严重。边坡崩塌与上盘效应也有密切关系,北川映秀段公路位于汶川地震断层上盘,以花岗岩等硬性岩石为主,岩石受风化影响严重,边坡岩体发生了大规模松动和崩塌。

    综上所述,边坡发生大规模崩塌滑坡现象的原因是发育良好的硬性岩石在严重的风化影响下,岩层层理间的胶结强度降低,产生微小裂缝,尤其是竖向层理的边坡岩体裂缝较明显。地形高差悬殊、坡度较陡的边坡对地震动强度有放大效应,遭遇强震时,地震波在已开裂的岩层中不断发生折射和反射,加大了破裂面上的拉应力,且岩层间产生的位移随之累积。这会导致结构面岩层强度进一步削弱,最终超过岩层破裂强度。上述破坏过程不仅发生在破裂界面上,岩石内部也受上述因素影响,导致岩体从震裂到松弛,抗剪能力较弱的岩层首先发生断裂,破裂的岩石从陡坡上被挤出,下落过程较迅速。

    塌陷滑移型滑坡指斜坡上岩石土体在重力或地震等其他作用下,沿着滑动面移动形成的滑坡。土体塌陷(陈乐生,2012b)是发生在冲积或海洋洪积平原天然沉积层内的破坏,常出现在溪流、渠道沿岸等地势较陡峭的边坡上,有时也出现在有浅层或上层滞水面的中等陡峭边坡上。图 13所示的岩土塌陷滑移,滑动岩体基本保持为整体,调查发现,发生此类破坏的边坡主要集中于坡度为30°-45°相对陡峭的边坡上,因坡度较崩塌型滑坡破坏的边坡小,移动速度相对较慢。通过滑动岩体基本保持了其相对位置,可知滑动面在地震发生前即为相对软弱的部位。

    在调查的179个塌陷边坡中,塌陷破坏主要集中于Ⅸ-Ⅺ度区,约占破坏总数的80%,可知塌陷滑移型滑坡受地震强度的影响较大。通过岩石性质调查,可知地震诱发的土体塌陷多发生于土质边坡上,这些岩石多为弱胶结沉积岩,且岩体为软弱和软硬互层。部分边坡破坏发生在河道或沼泽沉积物等软土地基上,这些地基压实度不足,且高路堤人工填土较松散,所以压实性及地基条件对地震边坡破坏的影响较大。

    由以上震害特点,对塌陷滑移型滑坡进行理论计算分析,为简化计算将边坡转化为二维平面,将地震动作为拟静力处理,水平和竖直两个方向的地震动影响相互独立,认为水平地震动系数kH用0.1、0.25和0.4分别表示小震(7度)、中震(8度)和大震(9度),相应的竖向地震动系数kV用0.05、0.125和0.2表示。如图 15所示,α表示滑动体滑动面与边坡坡面之间的角度;β表示水平向与边坡坡面的角度;FN表示对滑动体的支持力;FS表示平行于滑动面的力。

    图 15  滑动体受力示意图
    Figure 15.  Schematic diagram of sliding body force

    对滑动体受力分析,建立沿滑动面平行和垂直方向建立平衡方程。

    $$\left\{\begin{array}{l}F_{\mathrm{N}}=\left[\left(1-k_{\mathrm{V}}\right) \cos \alpha-k_{\mathrm{H}} \sin \alpha\right] \times W \\ F_{\mathrm{S}}=\left[\left(1-k_{\mathrm{V}}\right) \sin \alpha+k_{\mathrm{H}} \sin \alpha\right] \times W\end{array}\right. $$ (1)

    式中,为方便计算将滑动体简化为三角形,W为滑动体自重,用W=γ(tan α-H2/tan β)表示;γ为滑动体重度。

    沿滑动面向上的力由土体的粘聚力和摩擦力提供,表示为:

    $$F_{\mathrm{S}}=\left(c l+F_{\mathrm{N}} \tan \varphi\right) $$ (2)

    FS为土体表面具有的抗力;cl为破坏面粘聚力总和;FN为土体摩擦力;φ为滑动面上的土体内摩擦角。

    当滑动体处于临界状态(即有滑动趋势的岩体在粘聚力以及静摩擦作用下恰好保持静止),FS用公式(3)表示为:

    $$F_{\mathrm{S}}=\left(c l+F_{\mathrm{N}} \tan \varphi\right)=\left[\left(1-0.5 k_{\mathrm{H}}\right) \sin \alpha+k_{\mathrm{H}} \sin \alpha\right] \times \gamma\left(H^{2} / \tan \alpha-H^{2} / \tan \beta\right) $$ (3)

    通常将竖向地震动系数用水平地震动系数乘以相应的系数表示,即kV=ξkH,最终可以

    得出:

    $$\begin{aligned} k_{\mathrm{H}}=&\left[\frac{2 c}{\gamma H} \sin \beta+(\cos \alpha \tan \varphi-\sin \alpha) \times \sin (\beta-\alpha)\right]/ \\ &\{[(\cos \alpha+\sin \alpha \tan \varphi)-\xi(\sin \alpha-\cos \alpha \tan \varphi)] \times \sin (\beta-\alpha)\} \end{aligned} $$ (4)

    式(4)为边坡将要发生滑移时的临界条件,改变边坡坡度、岩土的性质与地震动强度可能会打破平衡条件,当右侧值大于左侧值时,边坡会发生破坏。

    综上分析,塌陷滑移型滑坡发生破坏时,软弱或软硬互层岩土边坡在重力作用及雨水等因素的影响下,产生相对薄弱层,有滑动趋势的岩体在接触面抗剪切力及静摩擦力作用下保持静止;当地震动强度超过某临界值时,薄弱层抗剪切力和摩擦力不足以承受滑动体重力分量及加速度,滑动体沿薄弱层被拉裂,薄弱层产生贯穿的裂缝,滑动体整体沿裂缝向下滑移。滑坡规模与边坡坡度有关,在相对陡峭的边坡上,随着坡度的增加,滑坡规模越来越大。

    随着大地震的发生,道路路面往往发生破坏。地层变形或地层破坏是导致道路破坏的直接原因(李杰,2012),由于强烈的地震动,地基局部隆起或面层断裂时有发生,但相比其他形式的破坏,此类震害现象较少。汶川地震造成的路基路面常见震害现象如图 16-20所示(中华人民共和国交通运输部等,2009)。

    图 16  路基沉陷
    Figure 16.  Subgrade subsidence
    图 17  路基沉降错台
    Figure 17.  Subgrade settlement
    图 18  路基失稳
    Figure 18.  Subgrade instability
    图 19  映秀镇附近路基纵向开裂
    Figure 19.  Longitudinal cracking of the roadbed near Yingxiu town
    图 20  断层形成的陡坎
    Figure 20.  Slope formed by fault scarp

    地震导致的面层破坏不仅是铺砌表面的路面破坏,多由路基永久性地层变形造成。稳定且不易受地震诱发永久变形的路基支撑上的面层,在地震作用下较少破坏。在地基或路堤特别脆弱的位置,路基发生严重破坏,无承载能力的面层也会随之破坏。基于汶川地震出现的路基路面破坏现象,根据路基产生永久变形的原因,将路基破坏分为以下情况:

    (1)压实度不足导致路基差异沉降

    图 16所示的路基差异沉降中,裂缝延伸至边坡一侧,路基类型为半填半挖型。在汶川地震调查的区段中,Ⅵ-Ⅺ度区内路基路面震害共579处,Ⅸ-Ⅺ度区震害较集中,震害受损程度较大,共498处,占总震害数量的86%,地震强度对路基的影响较大。路基破坏情况如图 21图 22所示,由图可知半填半挖是发生破坏的主要路基类型,土质是发生破坏的主要路基地质条件。

    图 21  不同路基类型下路基破坏情况
    Figure 21.  Subgrade damage under subgrade type
    图 22  不同地质条件下路基破坏情况
    Figure 22.  Subgrade damage under geological conditions

    考虑半填半挖路基人工填筑部分及土质地基压实度不足且承载力较低,易发生塑性变形。由此认为,路基震害除与地震烈度有关外,下卧层存在易受地震诱发地层位移影响的压实不良的路堤材料或压实度存在明显差异的路基也易产生差异沉降破坏。综上分析,在地震动的反复作用下,路基根据压实度不同发生不同的塑性形变,压实度不足的路基沉降较大,导致上层路面随之破坏,如地震发生后路桥结合处因压实度明显不同造成错台现象和半填半挖路基局部沉降错台现象。

    (2)路堤边坡失稳引起路基破坏

    图 17图 18所示为路堤边坡失稳引起的面层竖向位移震害现象,由图 18可知,路基在临路堤边坡一侧大范围塌陷,失去了支撑作用的路面不足以保证车辆安全通行。汶川地震中,仅受地震作用而破坏的路基较少,道路严重破坏多由浅层路基边坡塌陷所致。调查显示土质路基和半填半挖形式路基震损情况最多,且多为下边坡一侧临空路基下滑,导致路基发生严重毁坏,沿河公路出现此类破坏较多。分析认为半填半挖路基存在天然软弱结合面,沿河路堤边坡在河水的冲刷作用下易造成底部空虚,这是路堤边坡失稳的主要原因。

    综上可知,此类破坏类似边坡塌陷滑移破坏,不合理填筑的过陡路堤及土质路基在雨水等外因影响下底部产生较小的破裂层或天然存在薄弱层,在强烈的地震作用下,破裂层或薄弱层处裂缝进一步开展,抗剪强度不足时,路堤边坡发生整体塌滑,进而失稳,造成路基竖向剪切破坏,有时会造成路基大范围整体滑移。小范围的路堤边坡塌陷往往仅使面层发生位移和错动,大规模路堤边坡塌陷或深层塌陷,均会造成大规模路基竖向断裂,有时路基和路面沉降量高达几米。

    (3)断层破裂引起差异位移

    考虑断层破裂附近的道路破坏严重,且常出现较大裂缝(图 19),有时甚至出现高差几米的陡坎(图 20)。断层走向与公路走向的夹角统计结果显示,随着平行至垂直的变化,路基破坏数量逐渐减少,当与断层走向平行时,破坏集中,且出现多处隆起、错台破坏。根据断层作用方式的不同,将断层破裂对附近路基的影响分为以下方面:①对于走滑断层,断层的相对位移直接导致断层延伸至地表处,产生较大裂缝甚至高差悬殊的陡坎。此外,根据错台发生的不同位置可知主断层破裂会导致附近次生断层的出现。利用有限元模型对断层导致的公路破坏情况进行模拟(邓龙胜等,2009),结果表明断层导致路基路面的破坏模式包括张拉、剪切、弯压和复合破坏,主要以张拉破坏为主。②断层不仅对断裂带产生影响,走滑断层上下盘效应的影响也不能忽视。断层上盘效应对上断层PGA有明显的增大作用(王栋,2010范优铭等,2017),距断层裂缝越近,对道路上盘效应的影响越大。北川至映秀镇公路位于断层上盘,与下盘距断层相同距离的道路相比,震害较严重。由此可知,对于斜向走滑断层,主断层面两侧的相对移动导致道路路基被地震裂缝拉断,与此同时,主断层断裂导致次生断层破裂,随着断层的相对移动,路基随之产生位移,最终出现路基隆起、陡坎等破坏。对于水平方向的断层,上部路基路面整体随着地震产生位移,但不产生相对位移,因此水平方向的断层造成路堤破裂破坏的情况少。断层上盘效应使位于断层上盘的路基承受更大的地震动峰值加速度,相当于增大了地震动强度,从而使压实度不足的路基更易发生不均匀沉降,使土质路基边坡易发生失稳塌陷和整体滑移破坏。

    本文针对汶川地震震损道路进行机理分析,通过总结道路构件(挡土墙、边坡和路基路面)破坏类型,对破坏形式进行合理分类,给出每类破坏形式常见的自然地质条件和工程因素,得出以下结论:

    (1)对挡土墙墙身破坏和倾斜倾覆破坏进行分析,对于浆砌和石砌挡土墙结构,忽略施工质量和材料自身等因素,易在石块间的砂浆位置产生软弱区,这是挡土墙开裂、墙身剪断甚至整体垮塌的主要原因。混凝土挡土墙一般不会发生结构自身破坏,除非挡土墙内部存在缺陷,包括截面不足、施工缝不良和缺乏内部支撑。挡土墙倾斜破坏常发生在土质地基中,因地震动作用于挡土墙背后回填土上,导致主动土压力增大,墙趾在基础中被约束,且土质地基易变形,挡土墙越高墙趾处的转动力矩越大,挡土墙上部易产生位移,导致挡土墙倾斜,整体失稳。

    (2)根据不同边坡岩石类型和坡度产生的破坏现象,分为以下破坏模式:①崩塌型滑坡,发生大规模崩塌型滑坡现象的边坡具有硬质岩石、地形高差悬殊、坡度较陡、风化严重、处于断层上盘位置的特点。在地震作用下,抗剪能力较弱的岩层发生断裂,破裂的岩石从陡坡上被挤出。②塌陷滑移型滑坡,常见的人工填土中,发生大部分破坏的为填土松散,且压实度较差,或被填在河道、沼泽沉积物等软土地基上,在地震作用下,坡度为30°-45°的陡坡上中软岩石边坡在较深层沿软弱面断开,滑动体内部保持相对位置,整体下滑。

    (3)路基产生永久变形的情况包括:①路基差异沉降,土体在地震作用下,压实度不同的位置发生差异塑性变形;②路堤边坡失稳,类似边坡塌陷滑移破坏形式,在强烈的地震作用下,路基破裂层或薄弱层处裂缝进一步开展,路堤边坡发生整体塌滑,进而失稳,造成路基竖向剪切破坏;③断层造成路基永久变形,斜向走滑断层两侧有相对移动,导致道路路堤被地震裂缝拉断,且断层上盘效应明显增大地震动强度。对于道路路基路面,虽可通过分析进行抗震设计,可在震前有减小或消除大多数面层破坏的改造或加固方法,但震后修复价格往往令人无法接受,且震前改造或加固仅对面层结构具有可行性,所以建议采用震后面层破坏快速修理的被动策略,而不是在预防路基破坏上加大投入的主动策略。

  • 图  1  研究区地震构造

    Figure  1.  Seismic tectonic map of the study area

    图  2  都兰南断裂几何展布

    Figure  2.  Geometric display of the the Dulan South fault

    图  3  都兰南断裂地表破裂遥感影像(影像据Google map,红色箭头为断裂疑似位置)

    Figure  3.  Remote sensing image of surface ruptures at the Dulan South fault (According to google map, the red arrow is the suspected location of the break)

    图  4  都兰南断裂东段地表破裂

    Figure  4.  Surface rupture at the eastern end of the Dulan South fault

    图  5  断层陡坎垂直高度测量

    Figure  5.  Measurement of vertical height of fault steep

    图  6  沿地表破裂发育的断层凹槽、反向陡坎和断塞塘

    Figure  6.  Fault grooves, reverse steep ridges and fault ponds develop along surface ruptures

    图  7  G109国道以西1.5 km处断裂沿线地貌特征

    Figure  7.  Landform features along the fault 1.5 km to the west of G109 national highway

    图  8  G109国道以西1.5 km处断裂沿线左旋位移

    Figure  8.  Photo of left-handed displacement along the fault line 1.5 km west of G109 national highway

    图  9  探槽与断裂位置示意

    Figure  9.  Schematic diagram of the location of exploration trenches and faults

    图  10  探槽剖面及解译

    Figure  10.  Sectional view and interpretation of the trench

    图  11  S4冲沟左旋位错影像

    Figure  11.  Image of left hand dislocation in S4 gully

    图  12  探槽剖面图及解译

    Figure  12.  Profile and interpretation of trench

    表  1  地表破裂沿线冲沟左旋位错实测位移

    Table  1.   Measured displacement table of left-handed dislocation of gullies along the surface rupture

    实测水平位移点水平位移/m平均水平位移/m
    S111.7±1.214.5±1.8
    S214.5±1.5
    S315.8±1.5
    S416.0±1.6
    下载: 导出CSV

    表  2  断层陡坎垂直高度实测位移

    Table  2.   Measured displacement of vertical height of fault scarp

    实测垂直位移点垂直位移/m平均垂直位移/m
    P11.00.85
    P20.6
    P30.8
    P41.0
    下载: 导出CSV

    表  3  断裂沿线冲沟左旋位错实测位移

    Table  3.   Measured displacement table of gully left-handed dislocation along the fault

    实测水平位移点水平位移/m平均水平位移/m
    S57.0±0.86.7±0.8
    S66.4±0.8
    下载: 导出CSV

    表  4  桃斯托河西北岸探槽14C样品测试结果

    Table  4.   Test results of 14C sample from trench on the north west bank of taosto river

    实验室编号样品号取样位置测年物质常规放射性碳年代/a BP树轮校正2σ/Cal a BP
    Beta-536481DLT1-C2U4地层泥炭4 820±305 533±41
    Beta-536483DLT1-C4U5地层泥炭7 600±308 397±21
    下载: 导出CSV

    表  5  G109国道以西探槽OSL样品测试结果

    Table  5.   Test results of OSL sample trench from the trench to west of G109 national highway

    实验室编号样品号取样位置环境剂量率/(Gy·ka−1测年物质等效剂量/Gy年龄/ka
    DLT2-1U3地层未取得测试数据
    2020_1_22DLT2-2U3地层3.646±0.160粉质黏土17.58±1.974.8±0.6
    2020_1_23DLT2-3U3地层3.653±0.162细砂19.41±1.445.3±0.5
    下载: 导出CSV

    表  6  G109国道以西探槽14C样品测试结果

    Table  6.   Test results of 14C sample from the trench to the west of G109 national highway

    实验室编号样品号取样位置测年物质常规放射性碳年代/a BP树轮校正2σ/Cal a BP
    Beta-570283DLT2-C1U4地层泥炭5 710±306 497±51
    Beta-570284DLT2-C2U2地层泥炭2 820±302 922±44
    下载: 导出CSV
  • 邓起东, 张培震, 冉勇康等, 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020—1030.

    Deng Q. D. , Zhang P. Z. , Ran Y. K. , et al. , 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356—372.
    盖海龙, 姚生海, 杨丽萍等, 2021. 青海玛多“5·22”MS7.4级地震的同震地表破裂特征、成因及意义. 地质力学学报, 27(6): 899—912 doi: 10.12090/j.issn.1006-6616.2021.27.06.073

    Gai H. L. , Yao S. H. , Yang L. P. , et al. , 2021. Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS7.4 Earthquake in Maduo, Qinghai, and their significance. Journal of Geomechanics, 27(6): 899—912. (in Chinese) doi: 10.12090/j.issn.1006-6616.2021.27.06.073
    哈广浩, 任治坤, 刘金瑞等, 2021. 青海都兰地区夏日哈活动断裂带的发现及其构造意义. 地震地质, 43(3): 614—629 doi: 10.3969/j.issn.0253-4967.2021.03.009

    Ha G. H. , Ren Z. K. , Liu J. R. , et al. , 2021. New discovery of Xiariha fault zone around Dulan area, Qinghai province and its tectonic implications. Seismology and Geology, 43(3): 614—629. (in Chinese) doi: 10.3969/j.issn.0253-4967.2021.03.009
    李智敏, 苏鹏, 黄帅堂等, 2018. 日月山断裂德州段晚更新世以来的活动速率研究. 地震地质, 40(3): 656—671 doi: 10.3969/j.issn.0253-4967.2018.03.011

    Li Z. M. , Su P. , Huang S. T. , et al. , 2018. Slip rates of the Riyue MT. fault at Dezhou segment since late pleistocene. Seismology and Geology, 40(3): 656—671. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.03.011
    李忠武, 陈桂华, 2022. 基于无人机倾斜航空摄影三维点云测量同震倾滑变形研究——以2021年玛多MS7.4地震地表破裂为例. 震灾防御技术, 17(1): 46—55 doi: 10.11899/zzfy20220105

    Li Z. W. , Chen G. H. , 2022. Measurement of co-seismic dip-slip based on 3 D point clouds from UAV oblique photogrammetry——a case study of surface rupture of the 2021 Maduo MS7.4 earthquake[J]. Technology for Earthquake Disaster Prevention, 17(1): 46—55. (in Chinese) doi: 10.11899/zzfy20220105
    王光明, 吴中海, 彭关灵等, 2021.2021年5月21日漾濞MS6.4地震的发震断层及其破裂特征: 地震序列的重定位分析结果. 地质力学学报, 27(4): 662—678 doi: 10.12090/j.issn.1006-6616.2021.27.04.055

    Wang G. M. , Wu Z. H. , Peng G. L. , et al. , 2021. Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS6.4 earthquake: Analysis results from the relocation of the earthquake sequence. Journal of Geomechanics, 27(4): 662—678. (in Chinese) doi: 10.12090/j.issn.1006-6616.2021.27.04.055
    吴果, 孙浩越, 吕丽星等, 2022.2022年青海门源MS6.9地震后冷龙岭断裂未来强震的水平位错量评估. 震灾防御技术, 17(2): 308—315 doi: 10.11899/zzfy20220211

    Wu G. , Sun H. Y. , Lv L. X. , et al. , 2022. Assessment of horizontal displacements for future strong earthquakes on the Lenglongling fault after the 2022 MS6.9 Menyuan earthquake, Qinghai province, China. Technology for Earthquake Disaster Prevention, 17(2): 308—315. (in Chinese) doi: 10.11899/zzfy20220211
    徐锡伟, 2006. 活动断层、地震灾害与减灾对策问题. 震灾防御技术, 1(1): 7—14 doi: 10.3969/j.issn.1673-5722.2006.01.002

    Xu X. W. , 2006. Active faults, associated earthquake disaster distribution and policy for disaster reduction. Technology for Earthquake Disaster Prevention, 1(1): 7—14. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.01.002
    徐锡伟, 郭婷婷, 刘少卓等, 2016. 活动断层避让相关问题的讨论. 地震地质, 38(3): 477—502 doi: 10.3969/j.issn.0253-4967.2016.03.001

    Xu X. W. , Guo T. T. , Liu S. Z. , et al. , 2016. Discussion on issues associated with setback distance from active fault. Seismology and Geology, 38(3): 477—502. (in Chinese) doi: 10.3969/j.issn.0253-4967.2016.03.001
    姚生海, 盖海龙, 殷翔等, 2020. 柴达木盆地北缘断裂(锡铁山段)的构造地貌特征与晚第四纪活动速率. 地震地质, 42(6): 1385—1400 doi: 10.3969/j.issn.0253-4967.2020.06.008

    Yao S. H. , Gai H. L. , Yin X. , et al. , 2020. Tectonic geomorphology and quaternary slip rate of the Xitieshan section of the northern margin fault of Qaidam basin. Seismology and Geology, 42(6): 1385—1400. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.06.008
    袁道阳, 2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化. 北京: 中国地震局地质研究所.

    Yuan D. Y., 2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan plateau since the late Cenozoic time. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese)
    袁道阳, 张培震, 刘百篪等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换. 地质学报, 78(2): 270—278 doi: 10.3321/j.issn:0001-5717.2004.02.017

    Yuan D. Y. , Zhang P. Z. , Liu B. C. , et al. , 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau. Acta Geologica Sinica, 78(2): 270—278. (in Chinese) doi: 10.3321/j.issn:0001-5717.2004.02.017
    张培震, 邓起东, 张竹琪等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学: 地球科学, 43(10): 1607—1620 doi: 10.1360/zd-2013-43-10-1607

    Zhang P. Z. , Deng Q. D. , Zhang Z. Q. , et al. , 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China. Scientia Sinica Terrae, 43(10): 1607—1620. (in Chinese) doi: 10.1360/zd-2013-43-10-1607
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2018. GB/T 36072—2018 活动断层探测. 北京: 中国标准出版社.

    Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2018. GB/T 36072—2018 Surveying and prospecting of active fault. Beijing: Standards Press of China. (in Chinese)
    Molnar P. , Stock J. M. , 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28(3): TC3001.
    Yuan D. Y., Champagnac J. D., Ge W. P., et al., 2011. Late Quaternary right-lateral slip rates of faults adjacent to the Lake Qinghai, northeastern margin of the Tibetan plateau. GSA Bulletin, 123(9—10): 2016—2030.
    Zhang P. Z. , Shen Z. K. , Wang M. , et al. , 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809—812. doi: 10.1130/G20554.1
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  37
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回