• ISSN 1673-5722
  • CN 11-5429/P

碳纤维增强复合材料加固后埋地压力钢管在逆断层作用下的力学性能研究

钟紫蓝 赵鑫 崔建阳 赵旭 韩俊艳

钟紫蓝,赵鑫,崔建阳,赵旭,韩俊艳,2023. 碳纤维增强复合材料加固后埋地压力钢管在逆断层作用下的力学性能研究. 震灾防御技术,18(2):252−260. doi:10.11899/zzfy20230206. doi: 10.11899/zzfy20230206
引用本文: 钟紫蓝,赵鑫,崔建阳,赵旭,韩俊艳,2023. 碳纤维增强复合材料加固后埋地压力钢管在逆断层作用下的力学性能研究. 震灾防御技术,18(2):252−260. doi:10.11899/zzfy20230206. doi: 10.11899/zzfy20230206
Zhong Zilan, Zhao Xin, Cui Jianyang, Zhao Xu, Han Junyan. Study on Mechanical Properties of Buried Steel Pipelines Strengthened with Carbon Fiber Reinforced Polymer under Reverse Fault[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 252-260. doi: 10.11899/zzfy20230206
Citation: Zhong Zilan, Zhao Xin, Cui Jianyang, Zhao Xu, Han Junyan. Study on Mechanical Properties of Buried Steel Pipelines Strengthened with Carbon Fiber Reinforced Polymer under Reverse Fault[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 252-260. doi: 10.11899/zzfy20230206

碳纤维增强复合材料加固后埋地压力钢管在逆断层作用下的力学性能研究

doi: 10.11899/zzfy20230206
基金项目: 国家自然科学基金(51978020)
详细信息
    作者简介:

    钟紫蓝,男,生于1986年。博士,副研究员,博士生导师。主要从事城市基础设施结构抗震性能评价分析及灾害韧性评价工作。E-mail:zilanzhong@bjut.edu.cn

    通讯作者:

    赵旭,女,生于1976年。博士,副教授,硕士生导师。主要从事地下结构抗震研究工作。E-mail:zhaoxu@bjut.edu.cn

Study on Mechanical Properties of Buried Steel Pipelines Strengthened with Carbon Fiber Reinforced Polymer under Reverse Fault

  • 摘要: 碳纤维增强复合材料(CFRP)被广泛应用于工程结构加固领域,以提高结构抵抗变形的能力。基于管道-土体相互作用三维非线性有限元分析方法,研究逆断层作用下埋地油气钢管经外包CFRP加固后的非线性响应规律和破坏模式。基于Hashin失效准则模拟CFRP受力破坏过程,与相关理论公式进行对比验证,并对加固前后逆断层错动连续埋地钢管力学响应进行分析。研究结果表明,CFRP加固钢管可显著提高其抵抗逆断层错动的能力,0°/90°为最佳缠绕角度;管道内压的施加虽抑制了管道轴向应变的增加,但当管道发生局部屈曲后,管道内压会导致管道屈曲集中于应力最大处;管道内压的施加不仅增强了CFRP加固钢管的抗变形能力,还抑制了CFRP加固钢管发生局部屈曲后应变的发展。
  • 图  1  CFRP粘贴钢管方式示意

    Figure  1.  Schematic diagram of CFRP pasting steel pipeline

    图  2  逆断层-管道-CFRP三维数值分析模型

    Figure  2.  Three dimensional numerical analysis model of reverse fault pipeline CFRP

    图  3  X65管道应力-应变曲线

    Figure  3.  Stress strain curve of X65 pipeline

    图  4  数值模拟结果与理论结果的对比

    Figure  4.  Comparison between numerical simulation results and theoretical results

    图  5  断层错动量0.75 m时不同缠绕角度下无压管道应力分布及局部屈曲模式

    Figure  5.  Stress distribution and local buckling mode of pipeline under different wrapping angles when fault displacement is 0.75 m

    图  6  不同缠绕角度下无压管道底部应变

    Figure  6.  Bottom strain of unpressurised pipes at different wrapping angles

    图  7  不同缠绕角度下无压管道峰值压应变

    Figure  7.  Peak compressive strain of pipes at different wrapping angles

    图  8  断层错动量0.9 m时不同缠绕角度下有压管道应力分布及局部屈曲模式

    Figure  8.  Stress distribution and local buckling mode of pipeline under different wrapping angles when fault dislocation is 0.9 m

    图  9  不同缠绕厚度下有压管道底部应变

    Figure  9.  Bottom strain of pipes at different wrapping thicknesses

    图  10  不同缠绕角度下有压管道峰值压应变

    Figure  10.  Peak compressive strain in pressurized pipes at different wrapping angles

    表  1  土体物理力学参数

    Table  1.   Physical and mechanical parameters of soil

    名称ρ/(kg·m−3E/MPaμc/MPaϕ/(°)ψ/(°)
    黏土1 900330.2735220
    下载: 导出CSV

    表  2  CFRP材料力学性能

    Table  2.   Mechanical properties of CFRP materials

    沿纤维方向的
    弹性模量E1/MPa
    垂直于纤维方向的
    弹性模量E2/MPa
    泊松比Nu纤维-树脂方向的
    剪切模量G12/MPa
    垂直于纤维-树脂方向的
    剪切模量G13/MPa
    树脂自身的剪切
    模量G23/MPa
    CFRP的单层厚度
    tCFRP/mm
    230 0001 9000.33 3873 3873 3870.176
    下载: 导出CSV

    表  3  Hashin失效参数

    Table  3.   Hashin failure parameters

    方向参数数值/MPa方向参数数值/MPa
    x拉伸强度XT1 830y拉伸强度YT31.3
    压缩强度XC895压缩强度YC124.5
    剪切强度SL72剪切强度ST62.3
    下载: 导出CSV
  • 刘爱文, 胡聿贤, 赵凤新等, 2004. 地震断层作用下埋地管线壳有限元分析的等效边界方法. 地震学报, 26(S1): 141—147

    Liu A. W. , Hu Y. X. , Zhao F. X. , et al. , 2004. An equivalent-boundary method for the shell analysis of buried pipelines under fault movement. Acta Seismologica Sinica, 26(S1): 141—147. (in Chinese)
    邵永波, 朱红梅, 杨冬平, 2020. 轴压作用下CFRP加固圆钢管短柱的静力承载力分析. 西南交通大学学报, 55(1): 167—174 doi: 10.3969/j.issn.0258-2724.20180527

    Shao Y. B. , Zhu H. M. , Yang D. P. , 2020. Static bearing capacity analysis of CFRP-reinforced short CHS steel tubular columns under axial compression. Journal of Southwest Jiaotong University, 55(1): 167—174. (in Chinese) doi: 10.3969/j.issn.0258-2724.20180527
    赵旭, 崔建阳, 钟紫蓝等, 2022. 逆断层作用下埋地连续钢管的力学性能. 北京工业大学学报, 48(7): 729—738 doi: 10.11936/bjutxb2021030013

    Zhao X. , Cui J. Y. , Zhong Z. L. , et al. , 2022. Mechanical properties of buried continuous steel pipe under reverse fault. Journal of Beijing University of Technology, 48(7): 729—738. (in Chinese) doi: 10.11936/bjutxb2021030013
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2017. GB/T 50470—2017 油气输送管道线路工程抗震技术规范. 北京: 中国计划出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2017. GB/T 50470—2017 Seismic technical code for oil and gas transmission pipeline engineering. Beijing: China Planning Press. (in Chinese)
    Ariman T., 1983. A review of buckling and rupture failures in pipelines due to large ground deformations. In: American Society of Mechanical Engineers Pressure Vessel and Piping Conference. Portland: American Society of Mechanical Engineers.
    Betts D. , Sadeghian P. , Fam A. , 2019. Investigation of the stress-strain constitutive behavior of ±55° filament wound GFRP pipes in compression and tension. Composites Part B: Engineering, 172: 243—252. doi: 10.1016/j.compositesb.2019.05.077
    Brazier L. G., 1927. On the flexure of thin cylindrical shells and other “thin” sections. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 116(773): 104—114.
    Canadian Standards Association, 2007. CSA—Z662—2007 Oil and gas pipeline systems. Toronto: CSA.
    Chen W. W., Shih B. J., Chen Y. C., et al., 2002. Seismic response of natural gas and water pipelines in the Ji-Ji earthquake. Soil Dynamics and Earthquake Engineering, 22(9—12): 1209—1214.
    Cheng X. D. , Ma C. , Huang R. K. , et al. , 2019. Failure mode analysis of X80 buried steel pipeline under oblique-reverse fault. Soil Dynamics and Earthquake Engineering, 125: 105723. doi: 10.1016/j.soildyn.2019.105723
    Gawande K. , Kiran R. , Cherukuri H. P. , 2019. A numerical study of the response of buried steel pipelines undergoing strike-slip fault. Engineering Failure Analysis, 102: 203—218. doi: 10.1016/j.engfailanal.2019.04.026
    Kaya E. S. , Uçkan E. , O'Rourke M. J. , et al. , 2017. Failure analysis of a welded steel pipe at Kullar fault crossing. Engineering Failure Analysis, 71: 43—62. doi: 10.1016/j.engfailanal.2016.10.004
    Li L. Y. , 1996. Approximate estimates of dynamic instability of long circular cylindrical shells under pure bending. International Journal of Pressure Vessels and Piping, 67(1): 37—40. doi: 10.1016/0308-0161(94)00073-5
    Lim K. S. , Azraai S. N. A. , Yahaya N. , et al. , 2019. Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches. Thin-Walled Structures, 139: 321—333. doi: 10.1016/j.tws.2019.03.023
    Liu X. B. , Zhang H. , Li M. , et al. , 2016. Effects of steel properties on the local buckling response of high strength pipelines subjected to reverse faulting. Journal of Natural Gas Science and Engineering, 33: 378—387. doi: 10.1016/j.jngse.2016.05.036
    Mahdi E. , Eltai E. , 2018. Development of cost-effective composite repair system for oil/gas pipelines. Composite Structures, 202: 802—806. doi: 10.1016/j.compstruct.2018.04.025
    Melissianos V. E. , Vamvatsikos D. , Gantes C. J. , 2017. Performance-based assessment of protection measures for buried pipes at strike-slip fault crossings. Soil Dynamics and Earthquake Engineering, 101: 1—11. doi: 10.1016/j.soildyn.2017.07.004
    Mokhtari M. , Nia A. A. , 2015. The influence of using CFRP wraps on performance of buried steel pipelines under permanent ground deformations. Soil Dynamics and Earthquake Engineering, 73: 29—41. doi: 10.1016/j.soildyn.2015.02.014
    Ni P. P. , Moore I. D. , Take W. A. , 2018. Numerical modeling of normal fault-pipeline interaction and comparison with centrifuge tests. Soil Dynamics and Earthquake Engineering, 105: 127—138. doi: 10.1016/j.soildyn.2017.10.011
    O'Rourke T. D. , Palmer M. C. , 1996. Earthquake performance of gas transmission pipelines. Earthquake Spectra, 12(3): 493—527. doi: 10.1193/1.1585895
    Shamsuddoha M. , Islam M. M. , Aravinthan T. , et al. , 2013. Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs. Composite Structures, 100: 40—54. doi: 10.1016/j.compstruct.2012.12.019
    Soveiti S. , Mosalmani R. , 2020. Mechanical behavior of buried composite pipelines subjected to strike-slip fault movement. Soil Dynamics and Earthquake Engineering, 135: 106195. doi: 10.1016/j.soildyn.2020.106195
    Trifonov O. V. , Cherniy V. P. , 2014. Analysis of stress–strain state in a steel pipe strengthened with a composite wrap. Journal of Pressure Vessel Technology, 136(5): 051202. doi: 10.1115/1.4027229
    Valsamis A. I. , Bouckovalas G. D. , Gantes C. J. , 2020. Alternative design of buried pipelines at active fault crossings using flexible joints. International Journal of Pressure Vessels and Piping, 180: 104038. doi: 10.1016/j.ijpvp.2019.104038
    Vazouras P. , Karamanos S. A. , Dakoulas P. , 2012. Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dynamics and Earthquake Engineering, 41: 164—180. doi: 10.1016/j.soildyn.2012.05.012
    Zhang J. , Chen Y. , Zhang H. , 2020. Local buckling evolution mechanism of a buried steel pipe under fault movements. Energy Science & Engineering, 8(2): 412—425.
    Zhang L. S. , Zhao X. B. , Yan X. Z. , et al. , 2016. A new finite element model of buried steel pipelines crossing strike-slip faults considering equivalent boundary springs. Engineering Structures, 123: 30—44. doi: 10.1016/j.engstruct.2016.05.042
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  6
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-22
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回