• ISSN 1673-5722
  • CN 11-5429/P

断层破碎带注浆加固对跨断层隧道减震效果的试验研究

袁勇 黎若寒 赵旭

袁勇,黎若寒,赵旭,2023. 断层破碎带注浆加固对跨断层隧道减震效果的试验研究. 震灾防御技术,18(2):243−251. doi:10.11899/zzfy20230205. doi: 10.11899/zzfy20230205
引用本文: 袁勇,黎若寒,赵旭,2023. 断层破碎带注浆加固对跨断层隧道减震效果的试验研究. 震灾防御技术,18(2):243−251. doi:10.11899/zzfy20230205. doi: 10.11899/zzfy20230205
Yuan Yong, Li Ruohan, Zhao Xu. Shaking Table Tests on Seismic Mitigation Effect of Grouting Reinforcement in Fault-crossing Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 243-251. doi: 10.11899/zzfy20230205
Citation: Yuan Yong, Li Ruohan, Zhao Xu. Shaking Table Tests on Seismic Mitigation Effect of Grouting Reinforcement in Fault-crossing Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 243-251. doi: 10.11899/zzfy20230205

断层破碎带注浆加固对跨断层隧道减震效果的试验研究

doi: 10.11899/zzfy20230205
基金项目: 国家自然科学基金(51778487、52061135112、U1934210)
详细信息
    作者简介:

    袁勇,男,生于1963年。教授。主要从事地下工程动力灾变和服役性能的基础理论与工程应用研究。E-mail:yuany@tongji.edu.cn

Shaking Table Tests on Seismic Mitigation Effect of Grouting Reinforcement in Fault-crossing Tunnels

  • 摘要: 隧道跨越断层区段是地震中最容易发生破坏的区域之一。为研究注浆加固断层破碎带对于跨断层隧道的减震机制与效果,设计了断层内有、无注浆加固的2种模型,采用1-g振动台试验,输入汶川地震动记录,测试隧道衬砌的加速度响应和应变响应时程。分析试验结果发现,跨断层隧道的最大加速度响应和最大Arias烈度均位于断层破碎带与上盘岩体交界处,隧道衬砌最大动应变分布在该交界面侧的隧道拱肩部位和断层破碎带侧的拱底部位;注浆加固可以显著减小该处的加速度响应和Arias烈度,并降低隧道衬砌环动应变沿纵向的差异。通过注浆加固破碎带提升断层内隧道周围的地层物理力学特性以减小隧道纵向地层性质差异,可以有效减小跨断层隧道的加速度放大效应与变形差异。
  • 图  1  香炉山隧道穿越鹤庆-洱源断层区段示意图

    Figure  1.  Diagram of Xianglushan tunnel crossing Heqing-ergyuan fault zone

    图  2  轻骨料石膏应力应变关系

    Figure  2.  Stress-strain relationship of light aggregate gypsum

    图  3  模型示意图

    Figure  3.  Diagram of complete model

    图  4  观测断面与测点示意图

    Figure  4.  Diagram of monitoring sections

    图  5  汶川波时程及傅里叶谱

    Figure  5.  Accelerogram and Fourier spectrum of Wenchuan wave

    图  6  隧道加速度时程和傅里叶谱对比

    Figure  6.  Comparison of accelerogram and Fourier spectra of tunnel

    图  7  隧道纵向加速度放大系数对比

    Figure  7.  Comparison of acceleration amplification factor of tunnel along axis

    图  8  隧道节段6传递函数对比

    Figure  8.  Comparison of transfer function of section 6

    图  9  隧道Arias烈度时程对比

    Figure  9.  Comparison of Arias intensity time-history of tunnel

    图  10  隧道纵向Arias烈度对比

    Figure  10.  Comparison of Arias intensity of tunnel along axis

    图  11  隧道纵向各节段最大附加应变

    Figure  11.  Maximum additional strain of tunnel section along axis

    图  12  隧道典型应变响应时程曲线对比

    Figure  12.  Comparison of typical strain time-history of tunnel

    表  1  振动台试验相似关系

    Table  1.   Similitude relations for the shaking table test

    物理量相似关系相似比
    长度L1/15
    密度FT2L−46/25
    弹性模量FL−21/60
    应变1
    质量FL−1T21/14062
    速度LT−11/3.79
    时间T1/3.95
    频率T−13.95
    应力FL−21/60
    加速度LT−21.04
    下载: 导出CSV

    表  2  试验原型和试验模型材料特性

    Table  2.   Mechanical properties of prototype and model materials

    弹性模量/MPa密度/(kg·m−3泊松比粘聚力/kPa内摩擦角/(°)
    围岩原型600023000.3070039
    模型1005600.302518
    断层破碎带原型30017000.3510020
    模型54100.351.619
    隧道衬砌原型3000025000.20
    模型5006000.20
    注浆加固原型600022000.30
    模型1005100.23
    下载: 导出CSV

    表  3  注浆加固减震效果

    Table  3.   Seismic mitigation effect of grouting reinforcement

    部位最大附加应变/ με
    节段3节段5节段6节段7节段8节段9节段11
    拱顶11.22 (135%)9.64 (43%)21.11 (83%)7.58 (70%)8.10 (82%)9.05 (74%)33.74 (187%)
    拱肩9.34(105%)10.51 (125%)15.50 (11%)14.16 (100%)16.03 (125%)11.21 (62%)9.18 (123%)
    拱腰8.01(88%)8.36 (50%)20.02 (60%)8.87 (79%)17.87 (108%)8.34 (88%)9.23 (101%)
    拱脚9.52(139%)11.38 (85%)13.61 (28%)20.33 (122%)19.16 (89%)14.86 (135%)13.33 (108%)
    拱底5.11(69%)8.81 (58%)8.89 (33%)15.36 (10%)16.63 (199%)11.12 (67%)5.80 (63%)
    注:表中百分比为注浆加固模型中隧道衬砌峰值应变与无注浆加固模型中隧道衬砌峰值应变之比。
    下载: 导出CSV
  • 崔光耀, 纪磊, 荆鸿飞, 2019. 高烈度艰险山区跨断层隧道减震层减震技术研究. 地震工程学报, 41(2): 286—291

    Cui G. Y. , Ji L. , Jing H. F. , 2019. Damping shake technology of the shock absorption layer of fault-crossing tunnels in a dangerous mountainous area with high-intensity earthquakes. China Earthquake Engineering Journal, 41(2): 286—291. (in Chinese)
    方林, 蒋树屏, 林志等, 2011. 穿越断层隧道振动台模型试验研究. 岩土力学, 32(9): 2709—2713, 2820

    Fang L. , Jiang S. P. , Lin Z. , et al. , 2011. Shaking table model test study of tunnel through fault. Rock and Soil Mechanics, 32(9): 2709—2713, 2820. (in Chinese)
    耿萍, 吴川, 唐金良等, 2012. 穿越断层破碎带隧道动力响应特性分析. 岩石力学与工程学报, 31(7): 1406—1413

    Geng P. , Wu C. , Tang J. L. , et al. , 2012. Analysis of dynamic response properties for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1406—1413. (in Chinese)
    何川, 李林, 张景等, 2014. 隧道穿越断层破碎带震害机理研究. 岩土工程学报, 36(3): 427—434

    He C. , Li L. , Zhang J. , et al. , 2014. Seismic damage mechanism of tunnels through fault zones. Chinese Journal of Geotechnical Engineering, 36(3): 427—434. (in Chinese)
    刘国钊, 乔亚飞, 何满潮等, 2020. 活动性断裂带错动下隧道纵向响应的解析解. 岩土力学, 41(3): 923—932

    Liu G. Z. , Qiao Y. F. , He M. C. , et al. , 2020. An analytical solution of longitudinal response of tunnels under dislocation of active fault. Rock and Soil Mechanics, 41(3): 923—932. (in Chinese)
    王李斌, 崔光耀, 荆鸿飞, 2019. 高烈度地震区跨断层隧道围岩注浆抗震效果研究. 高速铁路技术, 10(3): 25—29

    Wang L. B. , Cui G. Y. , Jing H. F. , 2019. Study on anti-seismic effect of surrounding rock grouting of fault-crossing tunnels in highly seismic area. High Speed Railway Technology, 10(3): 25—29. (in Chinese)
    An D., Chen Z., Meng L. H., et al., 2020. Application of fiber-reinforced concrete lining for fault-crossing tunnels in meizoseismal area to improving seismic performance. Advances in Mechanical Engineering, 12(7): 168781402094402.
    Fan L. , Chen J. L. , Peng S. Q. , et al. , 2020. Seismic response of tunnel under normal fault slips by shaking table test technique. Journal of Central South University, 27(4): 1306–1319. doi: 10.1007/s11771-020-4368-0
    Hashash Y. M. A. , Hook J. J. , Schmidt B. , et al. , 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): 247–293. doi: 10.1016/S0886-7798(01)00051-7
    Jiao H. Y. , Du X. L. , Zhao M. , et al. , 2021. Nonlinear seismic response of rock tunnels crossing inactive fault under obliquely incident seismic P waves. Journal of Earth Science, 32(5): 1174—1189. doi: 10.1007/s12583-021-1483-2
    Ma Y. , Sheng Q. , Zhang G. M. , et al. , 2019. A 3 D discrete-continuum coupling approach for investigating the deformation and failure mechanism of tunnels across an active fault: a case study of Xianglushan tunnel. Applied Sciences, 9(11): 2318. doi: 10.3390/app9112318
    Shen Y. S. , Gao B. , Yang X. M. , et al. , 2014. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake. Engineering Geology, 180: 85–98. doi: 10.1016/j.enggeo.2014.07.017
    Wang X. W. , Xiong Q. R. , Zhou H. , et al. , 2020. Three-dimensional (3 D) dynamic finite element modeling of the effects of a geological fault on the seismic response of underground caverns. Tunnelling and Underground Space Technology, 96: 103210. doi: 10.1016/j.tust.2019.103210
    Yan G. M. , Shen Y. S. , Gao B. , et al. , 2020. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: An experimental and numerical investigation. Tunnelling and Underground Space Technology, 97: 103223. doi: 10.1016/j.tust.2019.103223
    Yang Z. H. , Lan H. X. , Zhang Y. S. , et al. , 2013. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event. Journal of Asian Earth Sciences, 64: 125–135. doi: 10.1016/j.jseaes.2012.12.006
    Yashiro K. , Kojima Y. , Shimizu M. , 2007. Historical earthquake damage to tunnels in japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake. Quarterly Report of RTRI, 48(3): 136–141. doi: 10.2219/rtriqr.48.136
    Zhao X. , Li R. H. , Yuan Y. , et al. , 2022. Shaking table tests on fault-crossing tunnels and aseismic effect of grouting. Tunnelling and Underground Space Technology, 125: 104511. doi: 10.1016/j.tust.2022.104511
    Zhong Z. L. , Wang Z. , Zhao M. , et al. , 2020. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement. Tunnelling and Underground Space Technology, 104: 103527. doi: 10.1016/j.tust.2020.103527
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  8
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回