Study on the Anti-dislocation Performance of Tianshan Shengli Tunnel Crossing Bo-A Fault Section
-
摘要: 目前针对超挖、铰接与减震层组合设计对走滑断层隧道抗错断损伤特征的研究尚不明确,为此以天山胜利隧道穿越博罗科努-阿其克库都克断裂为实际工程背景,采用可表征泡沫混凝土力学行为的塑性本构模型模拟减震层泡沫混凝土受压行为,建立精细化三维数值模型,评估隧道在超挖、铰接与减震层组合设计工况下的纵向位移、衬砌断面损伤和应力分布特征,得出采用超挖、铰接与减震层组合设计时的走滑断层隧道力学响应及破坏特征。研究结果表明,隧道受断层活动影响呈现S形变形,在断层滑动面附近隧道变形较大;走滑断层作用下衬砌损伤集中在拱腰及45°共轭方向,衬砌内力随着断层错动量的增加而增大;通过超挖、铰接与减震层的组合设计,能够较好地减轻隧道二次衬砌破坏。Abstract: The research on the characteristics of anti-dislocation damage of the strike-slip fault tunnel for the combination design of overbreak, hinge and damping layer is still unclear. Therefore, taking the tunnel crossing the Tianshan Bo-A fault zone as the research object, the plastic constitutive model that can characterize the mechanical behavior of foam concrete is used to simulate the compression behavior of foam concrete in the damping layer, and a refined three-dimensional numerical model is established to evaluate the longitudinal displacement deformation, lining section damage and stress distribution characteristics under the combined design conditions of hinge and damping layer, and the mechanical response and failure characteristics of overbreak, combined design of hinge and damping layer on strike-slip fault tunnel are obtained. The results show that: 1) The tunnel shows "S" shape deformation under the influence of fault activity, and the tunnel deformation is large near the fault sliding surface; 2) The damage of lining under the action of strike-slip fault is concentrated in the arch waist and 45° conjugate direction, and the internal force of lining increases with the increase of fault dislocation; 3) The combined design of overbreak, hinge and damping layer can effectively reduce the damage of secondary lining.
-
Key words:
- Tunnel /
- Active fault /
- Anti faulting /
- Shock absorption layer /
- Flexible articulation /
- Foam concrete
-
表 1 围岩力学参数
Table 1. Rock mechanics parameters
围岩类型 密度/(kg·m−3) 弹性模量/GPa 泊松比 摩擦角/(°) 黏聚力/MPa 断层破碎带 2790 1.2 0.35 27 0.2 围岩 2790 5.5 0.30 39 0.65 表 2 钢筋与混凝土参数
Table 2. Steel and concrete parameters
材料类型 密度/(kg·m−3) 弹性模量/GPa 泊松比 抗拉强度/MPa 抗压强度/MPa C25 2 300 28.0 0.200 1.78 16.70 C40 2 300 32.5 0.200 2.39 26.80 泡沫混凝土 350 0.3 0.250 0.25 1.83 HRB400钢筋 7 850 200.0 0.167 300.00 — -
陈正勋, 王泰典, 黄灿辉, 2011. 山岭隧道受震损害类型与原因之案例研究. 岩石力学与工程学报, 30(1): 45—57Chen Z. X. , Wang T. D. , Huang C. H. , 2011. Case study of earthquake-induced damage patterns of rock tunnel and associated reason. Chinese Journal of Rock Mechanics and Engineering, 30(1): 45—57. (in Chinese) 耿萍, 吴川, 唐金良等, 2012. 穿越断层破碎带隧道动力响应特性分析. 岩石力学与工程学报, 31(7): 1406—1413 doi: 10.3969/j.issn.1000-6915.2012.07.013Geng P. , Wu C. , Tang J. L. , et al. , 2012. Analysis of dynamic response properties for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1406—1413. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.013 黄生文, 司铁汉, 陈文胜等, 2006. 断层对大跨度隧道围岩应力影响的有限元分析. 岩石力学与工程学报, 25(S2): 3788—3793Huang S. W. , Si T. H. , Chen W. S. , et al. , 2006. Finite element analyses of influence of fault on large-span tunnel surrounding rock stress. Chinese Journal of Rock Mechanics and Engineering, 25(S2): 3788—3793. (in Chinese) 李学锋, 代志萍, 谷雪影等, 2014. 活断层错动位移下变形缝间距对隧道内力的影响. 隧道建设, 34(3): 237—242 doi: 10.3973/j.issn.1672-741X.2014.03.009Li X. F. , Dai Z. P. , Gu X. Y. , et al. , 2014. Influence of deformation joint spacing on internal force of tunnel under active fault movement. Tunnel Construction, 34(3): 237—242. (in Chinese) doi: 10.3973/j.issn.1672-741X.2014.03.009 刘学增, 王煦霖, 林亮伦, 2013.75°倾角正断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报, 32(8): 1714—1720Liu X. Z. , Wang X. L. , Lin L. L. , 2013. Model experiment on effect of normal fault with 75°dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 32(8): 1714—1720. (in Chinese) 刘学增, 王煦霖, 林亮伦, 2014 a. 45°倾角正断层粘滑错动对隧道影响试验分析. 同济大学学报(自然科学版), 42(1): 44—50Liu X. Z. , Wang X. L. , Lin L. L. , 2014 a. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel. Journal of Tongji University (Natural Science), 42(1): 44—50. (in Chinese) 刘学增, 王煦霖, 林亮伦, 2014 b. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究. 土木工程学报, 47(2): 121—128Liu X. Z. , Wang X. L. , Lin L. L. , 2014 b. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel. China Civil Engineering Journal, 47(2): 121—128. (in Chinese) 马建, 吴国栋, 2019. 博—阿断裂带中东段晚第四纪以来滑动速率. 高原地震, 31(1): 20—25 doi: 10.3969/j.issn.1005-586X.2019.01.004Ma J. , Wu G. D. , 2019. Late quaternary slip rate of the middle-east segment of bolokenu-aqikekuduke fault. Plateau Earthquake Research, 31(1): 20—25. (in Chinese) doi: 10.3969/j.issn.1005-586X.2019.01.004 聂建国, 王宇航, 2013. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究. 工程力学, 30(4): 59—67, 82Nie J. G. , Wang Y. H. , 2013. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures. Engineering Mechanics, 30(4): 59—67, 82. (in Chinese) 沈军, 汪一鹏, 李莹甄等, 2003. 中国新疆天山博阿断裂晚第四纪右旋走滑运动特征. 地震地质, 25(2): 183—194Shen J. , Wang Y. P. , Li Y. Z. , et al. , 2003. Late quaternary right-lateral strike-slip faulting along the bolokenu-aqikekuduke fault in Chinese Tian Shan. Seismology and Geology, 25(2): 183—194. (in Chinese) 田四明, 王伟, 唐国荣等, 2021. 川藏铁路隧道工程重大不良地质应对方案探讨. 隧道建设(中英文), 41(5): 697—712Tian S. M, Wang W. , Tang G. R. , et al. , 2021. Study on countermeasures for major unfavorable geological issues of tunnels on Sichuan-Tibet railway. Tunnel Construction, 41(5): 697—712. (in Chinese) 王滨, 2011. 断层作用下埋地钢质管道反应分析方法研究. 大连: 大连理工大学.Wang B., 2011. Study on analytical methods of buried steel pipelines under active faults. Dalian: Dalian University of Technology. (in Chinese) 王道远, 崔光耀, 袁金秀等, 2018. 断裂黏滑错动下隧道减错措施作用效果模型试验研究. 岩土工程学报, 40(8): 1515—1521Wang D. Y. , Cui G. Y. , Yuan J. X. , et al. , 2018. Model tests on effect of dislocation reducing measures of stick-slip fault of tunnels. Chinese Journal of Geotechnical Engineering, 40(8): 1515—1521. (in Chinese) 王飞, 高明忠, 林文明等, 2020. 深埋穿越破碎带隧道衬砌变形规律研究. 隧道建设(中英文), 40(S1): 232—240Wang F. , Gao M. Z. , Lin W. M. , et al. , 2020. Study on the deformation law of deep-buried tunnel lining crossing fractured zone. Tunnel Construction, 40(S1): 232—240. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese) Kiani M. , Akhlaghi T. , Ghalandarzadeh A. , 2016. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults. Tunnelling and Underground Space Technology, 51: 108—119. doi: 10.1016/j.tust.2015.10.005 Yan G. M. , Shen Y. S. , Gao B. , et al. , 2020. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation. Tunnelling and Underground Space Technology, 97: 103—223. Zhang C. Q. , Liu X. Y. , Zhu G. J. , et al. , 2020. Distribution patterns of rock mass displacement in deeply buried areas induced by active fault creep slip at engineering scale. Journal of Central South University, 27(10): 2849—2863. doi: 10.1007/s11771-020-4514-8 Zhao K. , Chen W. Z. , Yang D. S. , et al. , 2019. Mechanical tests and engineering applicability of fibre plastic concrete used in tunnel design in active fault zones. Tunnelling and Underground Space Technology, 88: 200—208. doi: 10.1016/j.tust.2019.03.009