• ISSN 1673-5722
  • CN 11-5429/P

天山胜利隧道穿越博-阿断裂段抗错断性能研究

刘继国 崔庆龙 舒恒 彭文波 吉瀚文

刘继国,崔庆龙,舒恒,彭文波,吉瀚文,2023. 天山胜利隧道穿越博-阿断裂段抗错断性能研究. 震灾防御技术,18(2):235−242. doi:10.11899/zzfy20230204. doi: 10.11899/zzfy20230204
引用本文: 刘继国,崔庆龙,舒恒,彭文波,吉瀚文,2023. 天山胜利隧道穿越博-阿断裂段抗错断性能研究. 震灾防御技术,18(2):235−242. doi:10.11899/zzfy20230204. doi: 10.11899/zzfy20230204
Liu Jiguo, Cui Qinglong, Shu Heng, Peng Wenbo, Ji Hanwen. Study on the Anti-dislocation Performance of Tianshan Shengli Tunnel Crossing Bo-A Fault Section[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 235-242. doi: 10.11899/zzfy20230204
Citation: Liu Jiguo, Cui Qinglong, Shu Heng, Peng Wenbo, Ji Hanwen. Study on the Anti-dislocation Performance of Tianshan Shengli Tunnel Crossing Bo-A Fault Section[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 235-242. doi: 10.11899/zzfy20230204

天山胜利隧道穿越博-阿断裂段抗错断性能研究

doi: 10.11899/zzfy20230204
基金项目: 新疆维吾尔自治区重大科技专项项目(2020A03003-3)
详细信息
    作者简介:

    刘继国,男,生于1976年。正高级工程师。主要从事隧道与地下工程科研与设计工作。E-mail:liujiguogg@163.com

    通讯作者:

    吉瀚文,男,生于1997年。博士研究生。主要从事地下空间结构防灾研究。E-mail:3213254366@qq.com

Study on the Anti-dislocation Performance of Tianshan Shengli Tunnel Crossing Bo-A Fault Section

  • 摘要: 目前针对超挖、铰接与减震层组合设计对走滑断层隧道抗错断损伤特征的研究尚不明确,为此以天山胜利隧道穿越博罗科努-阿其克库都克断裂为实际工程背景,采用可表征泡沫混凝土力学行为的塑性本构模型模拟减震层泡沫混凝土受压行为,建立精细化三维数值模型,评估隧道在超挖、铰接与减震层组合设计工况下的纵向位移、衬砌断面损伤和应力分布特征,得出采用超挖、铰接与减震层组合设计时的走滑断层隧道力学响应及破坏特征。研究结果表明,隧道受断层活动影响呈现S形变形,在断层滑动面附近隧道变形较大;走滑断层作用下衬砌损伤集中在拱腰及45°共轭方向,衬砌内力随着断层错动量的增加而增大;通过超挖、铰接与减震层的组合设计,能够较好地减轻隧道二次衬砌破坏。
  • 图  1  天山胜利隧道穿越博-阿断裂地质剖面

    Figure  1.  Geological profile of Tianshan tunnel crossing Bolokenu-Aqikekuduke fault

    图  2  超挖段隧道结构

    Figure  2.  Tunnel structure diagram of overbreak sections

    图  3  柔性铰接设计结构

    Figure  3.  Structural diagram of flexible hinge design

    图  4  核心段S-DZ1隧道横断面

    Figure  4.  Cross section of core section S-DZ1

    图  5  数值分析流程

    Figure  5.  Numerical analysis process

    图  6  三维数值分析模型

    Figure  6.  3D Numerical analysis model

    图  7  监测点布置

    Figure  7.  Monitoring point

    图  8  泡沫混凝土应力-应变曲线

    Figure  8.  Stress-strain curve of foam concrete

    图  9  隧道位移曲线

    Figure  9.  Displacement curve

    图  10  刚度损伤因子曲线

    Figure  10.  Scalar stiffness degradation curve

    图  11  损伤分布曲线

    Figure  11.  Damage distribution curve

    图  12  Mises应力分布

    Figure  12.  Mises stress distribution diagram

    图  13  不同工况下隧道衬砌损伤对比云图

    Figure  13.  Damage comparison

    表  1  围岩力学参数

    Table  1.   Rock mechanics parameters

    围岩类型密度/(kg·m−3弹性模量/GPa泊松比摩擦角/(°)黏聚力/MPa
    断层破碎带27901.20.35270.2
    围岩27905.50.30390.65
    下载: 导出CSV

    表  2  钢筋与混凝土参数

    Table  2.   Steel and concrete parameters

    材料类型密度/(kg·m−3弹性模量/GPa泊松比抗拉强度/MPa抗压强度/MPa
    C252 30028.00.2001.7816.70
    C402 30032.50.2002.3926.80
    泡沫混凝土3500.30.2500.251.83
    HRB400钢筋7 850200.00.167300.00
    下载: 导出CSV
  • 陈正勋, 王泰典, 黄灿辉, 2011. 山岭隧道受震损害类型与原因之案例研究. 岩石力学与工程学报, 30(1): 45—57

    Chen Z. X. , Wang T. D. , Huang C. H. , 2011. Case study of earthquake-induced damage patterns of rock tunnel and associated reason. Chinese Journal of Rock Mechanics and Engineering, 30(1): 45—57. (in Chinese)
    耿萍, 吴川, 唐金良等, 2012. 穿越断层破碎带隧道动力响应特性分析. 岩石力学与工程学报, 31(7): 1406—1413 doi: 10.3969/j.issn.1000-6915.2012.07.013

    Geng P. , Wu C. , Tang J. L. , et al. , 2012. Analysis of dynamic response properties for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1406—1413. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.013
    黄生文, 司铁汉, 陈文胜等, 2006. 断层对大跨度隧道围岩应力影响的有限元分析. 岩石力学与工程学报, 25(S2): 3788—3793

    Huang S. W. , Si T. H. , Chen W. S. , et al. , 2006. Finite element analyses of influence of fault on large-span tunnel surrounding rock stress. Chinese Journal of Rock Mechanics and Engineering, 25(S2): 3788—3793. (in Chinese)
    李学锋, 代志萍, 谷雪影等, 2014. 活断层错动位移下变形缝间距对隧道内力的影响. 隧道建设, 34(3): 237—242 doi: 10.3973/j.issn.1672-741X.2014.03.009

    Li X. F. , Dai Z. P. , Gu X. Y. , et al. , 2014. Influence of deformation joint spacing on internal force of tunnel under active fault movement. Tunnel Construction, 34(3): 237—242. (in Chinese) doi: 10.3973/j.issn.1672-741X.2014.03.009
    刘学增, 王煦霖, 林亮伦, 2013.75°倾角正断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报, 32(8): 1714—1720

    Liu X. Z. , Wang X. L. , Lin L. L. , 2013. Model experiment on effect of normal fault with 75°dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 32(8): 1714—1720. (in Chinese)
    刘学增, 王煦霖, 林亮伦, 2014 a. 45°倾角正断层粘滑错动对隧道影响试验分析. 同济大学学报(自然科学版), 42(1): 44—50

    Liu X. Z. , Wang X. L. , Lin L. L. , 2014 a. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel. Journal of Tongji University (Natural Science), 42(1): 44—50. (in Chinese)
    刘学增, 王煦霖, 林亮伦, 2014 b. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究. 土木工程学报, 47(2): 121—128

    Liu X. Z. , Wang X. L. , Lin L. L. , 2014 b. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel. China Civil Engineering Journal, 47(2): 121—128. (in Chinese)
    马建, 吴国栋, 2019. 博—阿断裂带中东段晚第四纪以来滑动速率. 高原地震, 31(1): 20—25 doi: 10.3969/j.issn.1005-586X.2019.01.004

    Ma J. , Wu G. D. , 2019. Late quaternary slip rate of the middle-east segment of bolokenu-aqikekuduke fault. Plateau Earthquake Research, 31(1): 20—25. (in Chinese) doi: 10.3969/j.issn.1005-586X.2019.01.004
    聂建国, 王宇航, 2013. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究. 工程力学, 30(4): 59—67, 82

    Nie J. G. , Wang Y. H. , 2013. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures. Engineering Mechanics, 30(4): 59—67, 82. (in Chinese)
    沈军, 汪一鹏, 李莹甄等, 2003. 中国新疆天山博阿断裂晚第四纪右旋走滑运动特征. 地震地质, 25(2): 183—194

    Shen J. , Wang Y. P. , Li Y. Z. , et al. , 2003. Late quaternary right-lateral strike-slip faulting along the bolokenu-aqikekuduke fault in Chinese Tian Shan. Seismology and Geology, 25(2): 183—194. (in Chinese)
    田四明, 王伟, 唐国荣等, 2021. 川藏铁路隧道工程重大不良地质应对方案探讨. 隧道建设(中英文), 41(5): 697—712

    Tian S. M, Wang W. , Tang G. R. , et al. , 2021. Study on countermeasures for major unfavorable geological issues of tunnels on Sichuan-Tibet railway. Tunnel Construction, 41(5): 697—712. (in Chinese)
    王滨, 2011. 断层作用下埋地钢质管道反应分析方法研究. 大连: 大连理工大学.

    Wang B., 2011. Study on analytical methods of buried steel pipelines under active faults. Dalian: Dalian University of Technology. (in Chinese)
    王道远, 崔光耀, 袁金秀等, 2018. 断裂黏滑错动下隧道减错措施作用效果模型试验研究. 岩土工程学报, 40(8): 1515—1521

    Wang D. Y. , Cui G. Y. , Yuan J. X. , et al. , 2018. Model tests on effect of dislocation reducing measures of stick-slip fault of tunnels. Chinese Journal of Geotechnical Engineering, 40(8): 1515—1521. (in Chinese)
    王飞, 高明忠, 林文明等, 2020. 深埋穿越破碎带隧道衬砌变形规律研究. 隧道建设(中英文), 40(S1): 232—240

    Wang F. , Gao M. Z. , Lin W. M. , et al. , 2020. Study on the deformation law of deep-buried tunnel lining crossing fractured zone. Tunnel Construction, 40(S1): 232—240. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese)
    Kiani M. , Akhlaghi T. , Ghalandarzadeh A. , 2016. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults. Tunnelling and Underground Space Technology, 51: 108—119. doi: 10.1016/j.tust.2015.10.005
    Yan G. M. , Shen Y. S. , Gao B. , et al. , 2020. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation. Tunnelling and Underground Space Technology, 97: 103—223.
    Zhang C. Q. , Liu X. Y. , Zhu G. J. , et al. , 2020. Distribution patterns of rock mass displacement in deeply buried areas induced by active fault creep slip at engineering scale. Journal of Central South University, 27(10): 2849—2863. doi: 10.1007/s11771-020-4514-8
    Zhao K. , Chen W. Z. , Yang D. S. , et al. , 2019. Mechanical tests and engineering applicability of fibre plastic concrete used in tunnel design in active fault zones. Tunnelling and Underground Space Technology, 88: 200—208. doi: 10.1016/j.tust.2019.03.009
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  21
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回