• ISSN 1673-5722
  • CN 11-5429/P

逆断层作用下上覆土层与隧道变形传递模型试验研究

郭远鹏 陈之毅 李得睿 程斌

郭远鹏,陈之毅,李得睿,程斌,2023. 逆断层作用下上覆土层与隧道变形传递模型试验研究. 震灾防御技术,18(2):226−234. doi:10.11899/zzfy20230203. doi: 10.11899/zzfy20230203
引用本文: 郭远鹏,陈之毅,李得睿,程斌,2023. 逆断层作用下上覆土层与隧道变形传递模型试验研究. 震灾防御技术,18(2):226−234. doi:10.11899/zzfy20230203. doi: 10.11899/zzfy20230203
Guo Yuanpeng, Chen Zhiyi, Li Derui, Cheng Bin. Model Test Study on Deformation Transfer between Overlying Soil Layer and Tunnel under Reverse Fault Action[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 226-234. doi: 10.11899/zzfy20230203
Citation: Guo Yuanpeng, Chen Zhiyi, Li Derui, Cheng Bin. Model Test Study on Deformation Transfer between Overlying Soil Layer and Tunnel under Reverse Fault Action[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 226-234. doi: 10.11899/zzfy20230203

逆断层作用下上覆土层与隧道变形传递模型试验研究

doi: 10.11899/zzfy20230203
基金项目: 国家自然科学基金(52278410)
详细信息
    作者简介:

    郭远鹏,男,生于1998年。硕士研究生。主要从事活动断层区隧道防灾减灾方面的研究。E-mail:2032295@tongji.edu.cn

    通讯作者:

    陈之毅,女,生于1977年。教授,博士生导师。主要从事地下结构抗震方面的研究。E-mail:zhiyichen@tongji.edu.cn

Model Test Study on Deformation Transfer between Overlying Soil Layer and Tunnel under Reverse Fault Action

  • 摘要: 基于自行设计的错动模型试验装置和数字图像相关技术开展1∶80模型试验,研究60°倾角逆断层错动作用导致上覆土层剪切破裂的过程。依托数字图像相关技术非接触式全场测量的优势,分析上覆土层与隧道相互作用对上覆土层剪切破裂扩展、上覆土层变形和地表变形的影响,总结60°倾角逆断层错动作用下上覆土层与隧道之间的变形传递形式。研究结果表明,与自由场试验结果相比,由于隧道与上覆土层变形不同步,剪切破裂遇到隧道时会产生分叉,即隧道能够偏移上覆土层剪切破裂路径;在逆断层作用下,由于上覆土层与隧道力学性能存在差异,二者不能同步变形,为适应剪切区上覆土层的大变形,隧道周边土体会出现脱空,不利于隧道抗震;与自由场试验结果相比,隧道在影响破裂路径的同时能够将剪切变形扩散到更宽的区域,并在地表产生更大范围的陡坎。
  • 图  1  断层错动试验装置示意

    Figure  1.  Schematic diagram of fault dislocation test device

    图  2  直接剪切试验结果

    Figure  2.  Direct shear test results

    图  3  上覆土层与隧道模型

    Figure  3.  Overburden and tunnel model

    图  4  监测系统与分析流程

    Figure  4.  Monitoring system and analyzing process

    图  5  土层照片(错动位移30 mm)

    Figure  5.  Photos of soil layer (Dislocation 30 mm)

    图  6  土层破裂轨迹曲线

    Figure  6.  Curve of soil layer fracture track

    图  7  土层破裂轨迹梯度曲线

    Figure  7.  Gradient curve of soil rupture track

    图  8  上覆土层位移云图 (错动位移30 mm)

    Figure  8.  Nephogram of overlying soil layer displacement (Dislocation 30 mm)

    图  9  上覆土层剪应变云图(错动位移30 mm)

    Figure  9.  Shearing strain nephogram of overlying soil layer (Dislocation 30 mm)

    图  10  模型试验与数值模拟结果对比验证(错动位移30 mm)

    Figure  10.  Comparison and verification of model test and numerical simulation (Dislocation 30 mm)

    图  11  地表位移曲线

    Figure  11.  Curve of surface displacement

    图  12  地表位移梯度曲线

    Figure  12.  Gradient curve of surface displacement

    表  1  ISO标准砂基本物理参数

    Table  1.   Physical mechanical parameters of ISO standard sand

    相对密度$ {G}_{{\rm{s}}} $最大孔隙比$ {e}_{{\rm{max}}} $最小孔隙比$ {e}_{{\rm{min}}} $样品的累计粒度分布百分数达到50%时所对应的粒径$ {d}_{50} $不均匀系数$ {C}_{{\rm{u}}} $曲率系数$ {C}_{{\rm{c}}} $
    2.6430.8480.5190.211.5421.004
    下载: 导出CSV

    表  2  上覆土层剪切破裂带扩展关键参数

    Table  2.   Key parameters of shear fracture zone expansion of overlying soil layer

    工况有无隧道水平传播距离/mm地表梯度地表扩展角/(°)
    自由场180.0−0.3519
    隧道220.0−0.75、−1.1837、50
    下载: 导出CSV

    表  3  地表变形关键参数

    Table  3.   Key parameters of surface deformation

    工况影响区范围/$ \mathrm{m}\mathrm{m} $地表位移曲线拐点位置/$ \mathrm{m}\mathrm{m} $地表位移曲线拐点位置倾角
    /(°)
    上盘边界下盘边界
    自由场400400−15011
    133−267
    隧道467467−233、−834、9
    133−333
    下载: 导出CSV
  • 安韶, 陶连金, 边金等, 2020. 跨活动断裂带城市浅埋地铁隧道结构两阶段设计方法研究. 中南大学学报(自然科学版), 51(9): 2558—2570

    An S. , Tao L. J. , Bian J. , et al. , 2020. Study on two-level design method of urban shallow subway tunnel structure crossing active fault. Journal of Central South University (Science and Technology), 51(9): 2558—2570. (in Chinese)
    程斌, 李得睿, 2022. 基于退相关DIC的疲劳裂纹全局动态测量方法. 力学学报, 54(4): 1040—1050

    Cheng B. , Li D. R. , 2022. Full-field dynamic measurement method for fatigue cracks based on decorrelation DIC. Chinese Journal of Theoretical and Applied Mechanics, 54(4): 1040—1050. (in Chinese)
    蒋建平, 章杨松, 罗国煜等, 2002. 南京地铁地基下稳定性因素分析及对策. 地下空间, 22(1): 42—44

    Jiang J. P. , Zhang Y. S. , Luo G. Y. , 2022. Analysis on unstable factors for ground of Nanjing metro and their countermeasures. Underground Space, 22(1): 42—44. (in Chinese)
    李晓博, 张亮, 2020. 乌鲁木齐地铁1号线穿越断裂带的设计与施工. 都市快轨交通, 33(1): 70—76

    Li X. B. , Zhang L. , 2020. Design and construction of Urumqi metro line 1 crossing fault zone. Urban Rapid Rail Transit, 33(1): 70—76. (in Chinese)
    刘学增, 林亮伦, 2011.75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报, 30(12): 2523—2530

    Liu X. Z. , Lin L. L. , 2011. Research on model experiment of effect of thrust fault with 75° dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 30(12): 2523—2530. (in Chinese)
    石吉森, 凌道盛, 徐泽龙等, 2018. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究. 工程力学, 35(7): 194—207

    Shi J. S. , Ling D. S. , Xu Z. L. , et al. , 2018. Model testing study on the influence of reverse faulting on overlaying soil under an inclined ground. Engineering Mechanics, 35(7): 194—207. (in Chinese)
    徐锡伟, 赵伯明, 马胜利等, 2011. 活动断层地震灾害预测方法与应用. 北京: 科学出版社.
    Chang Y. Y. , Lee C. J. , Huang W. C. , et al. , 2015. Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand. Engineering Geology, 184: 52—70. doi: 10.1016/j.enggeo.2014.10.023
    Chen Z. Y. , Jia P. , 2019. Three-dimensional analysis of effects of ground loss on static and seismic response of shafts. Tunnelling and Underground Space Technology, 92: 103067. doi: 10.1016/j.tust.2019.103067
    Lee J. W. , Hamada M. , 2005. An experimental study on earthquake fault rupture propagation through a sandy soil deposit. Structural Engineering / Earthquake Engineering, 22(1): 1 s—13 s. doi: 10.2208/jsceseee.22.1s
    Lin M. L., Chung C. F., Jeng F. S., 2006. Deformation of overburden soil induced by thrust fault slip. Engineering Geology, 88(1—2): 70—89.
    Lin M. L., Chung C. F., Jeng F. S., et al., 2007. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels. Engineering Geology, 92(3—4): 110—132.
    Pan B. , 2018. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Measurement Science and Technology, 29(8): 082001. doi: 10.1088/1361-6501/aac55b
    Rechenmacher A. L. , Finno R. J. , 2004. Digital image correlation to evaluate shear banding in dilative sands. Geotechnical Testing Journal, 27(1): 13—22.
    Sabagh M. , Ghalandarzadeh A. , 2020. Centrifugal modeling of continuous shallow tunnels at active normal faults intersection. Transportation Geotechnics, 22: 100325. doi: 10.1016/j.trgeo.2020.100325
    Take W. A. , 2015. Thirty-sixth Canadian geotechnical colloquium: advances in visualization of geotechnical processes through digital image correlation. Canadian Geotechnical Journal, 52(9): 1199—1220. doi: 10.1139/cgj-2014-0080
    Wang W. L. , Wang T. T. , Su J. J. , et al. , 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and Underground Space Technology, 16(3): 133—150. doi: 10.1016/S0886-7798(01)00047-5
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-17
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回