Model Test Study on Deformation Transfer between Overlying Soil Layer and Tunnel under Reverse Fault Action
-
摘要: 基于自行设计的错动模型试验装置和数字图像相关技术开展1∶80模型试验,研究60°倾角逆断层错动作用导致上覆土层剪切破裂的过程。依托数字图像相关技术非接触式全场测量的优势,分析上覆土层与隧道相互作用对上覆土层剪切破裂扩展、上覆土层变形和地表变形的影响,总结60°倾角逆断层错动作用下上覆土层与隧道之间的变形传递形式。研究结果表明,与自由场试验结果相比,由于隧道与上覆土层变形不同步,剪切破裂遇到隧道时会产生分叉,即隧道能够偏移上覆土层剪切破裂路径;在逆断层作用下,由于上覆土层与隧道力学性能存在差异,二者不能同步变形,为适应剪切区上覆土层的大变形,隧道周边土体会出现脱空,不利于隧道抗震;与自由场试验结果相比,隧道在影响破裂路径的同时能够将剪切变形扩散到更宽的区域,并在地表产生更大范围的陡坎。Abstract: Based on the self-designed dislocation model test device and DIC technology, the 1∶80 model test was carried out to study the process of shear fracture of overlying soil caused by the action of a 60° reverse fault. Relying on the advantages of non-contact whole-field measurement of DIC technology, the influence of the interaction between the overlying soil layer and the tunnel on the shear fracture propagation of the overlying soil, the deformation of the overlying soil and the surface deformation is emphatically analyzed, and the deformation transfer mechanism between the overlying soil layer and the tunnel is summarized. The test results show that, compared with the free field test results, because the rigidity of the tunnel is far greater than that of the overburden, the shear fracture and the tunnel encounter will produce bifurcation, that is, the tunnel can offset the shear fracture path of the overburden; Under the action of reverse fault, the overlying soil layer and the tunnel cannot deform synchronously due to the difference of mechanical properties. To adapt to the large deformation of the overlying soil layer in the shear zone, the soil around the tunnel will appear void, which is unfavorable to the seismic resistance of the tunnel. Compared with the free field test results, the tunnel can spread the shear deformation to a wider area while affecting the fracture path, and produce a wider range of scarps on the surface.
-
Key words:
- Tunnel /
- Fault zone /
- Fault dislocation /
- Shear deformation /
- Interaction /
- Digital image correlation (DIC)
-
表 1 ISO标准砂基本物理参数
Table 1. Physical mechanical parameters of ISO standard sand
相对密度$ {G}_{{\rm{s}}} $ 最大孔隙比$ {e}_{{\rm{max}}} $ 最小孔隙比$ {e}_{{\rm{min}}} $ 样品的累计粒度分布百分数达到50%时所对应的粒径$ {d}_{50} $ 不均匀系数$ {C}_{{\rm{u}}} $ 曲率系数$ {C}_{{\rm{c}}} $ 2.643 0.848 0.519 0.21 1.542 1.004 表 2 上覆土层剪切破裂带扩展关键参数
Table 2. Key parameters of shear fracture zone expansion of overlying soil layer
工况 有无隧道 水平传播距离/mm 地表梯度 地表扩展角/(°) 自由场 无 180.0 −0.35 19 隧道 有 220.0 −0.75、−1.18 37、50 表 3 地表变形关键参数
Table 3. Key parameters of surface deformation
工况 影响区范围/$ \mathrm{m}\mathrm{m} $ 地表位移曲线拐点位置/$ \mathrm{m}\mathrm{m} $ 地表位移曲线拐点位置倾角
/(°)上盘边界 下盘边界 自由场 400 400 −150 11 133 −267 隧道 467 467 −233、−83 4、9 133 −333 -
安韶, 陶连金, 边金等, 2020. 跨活动断裂带城市浅埋地铁隧道结构两阶段设计方法研究. 中南大学学报(自然科学版), 51(9): 2558—2570An S. , Tao L. J. , Bian J. , et al. , 2020. Study on two-level design method of urban shallow subway tunnel structure crossing active fault. Journal of Central South University (Science and Technology), 51(9): 2558—2570. (in Chinese) 程斌, 李得睿, 2022. 基于退相关DIC的疲劳裂纹全局动态测量方法. 力学学报, 54(4): 1040—1050Cheng B. , Li D. R. , 2022. Full-field dynamic measurement method for fatigue cracks based on decorrelation DIC. Chinese Journal of Theoretical and Applied Mechanics, 54(4): 1040—1050. (in Chinese) 蒋建平, 章杨松, 罗国煜等, 2002. 南京地铁地基下稳定性因素分析及对策. 地下空间, 22(1): 42—44Jiang J. P. , Zhang Y. S. , Luo G. Y. , 2022. Analysis on unstable factors for ground of Nanjing metro and their countermeasures. Underground Space, 22(1): 42—44. (in Chinese) 李晓博, 张亮, 2020. 乌鲁木齐地铁1号线穿越断裂带的设计与施工. 都市快轨交通, 33(1): 70—76Li X. B. , Zhang L. , 2020. Design and construction of Urumqi metro line 1 crossing fault zone. Urban Rapid Rail Transit, 33(1): 70—76. (in Chinese) 刘学增, 林亮伦, 2011.75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报, 30(12): 2523—2530Liu X. Z. , Lin L. L. , 2011. Research on model experiment of effect of thrust fault with 75° dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 30(12): 2523—2530. (in Chinese) 石吉森, 凌道盛, 徐泽龙等, 2018. 倾斜场地中逆断层错动对上覆土体影响的模型试验研究. 工程力学, 35(7): 194—207Shi J. S. , Ling D. S. , Xu Z. L. , et al. , 2018. Model testing study on the influence of reverse faulting on overlaying soil under an inclined ground. Engineering Mechanics, 35(7): 194—207. (in Chinese) 徐锡伟, 赵伯明, 马胜利等, 2011. 活动断层地震灾害预测方法与应用. 北京: 科学出版社. Chang Y. Y. , Lee C. J. , Huang W. C. , et al. , 2015. Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand. Engineering Geology, 184: 52—70. doi: 10.1016/j.enggeo.2014.10.023 Chen Z. Y. , Jia P. , 2019. Three-dimensional analysis of effects of ground loss on static and seismic response of shafts. Tunnelling and Underground Space Technology, 92: 103067. doi: 10.1016/j.tust.2019.103067 Lee J. W. , Hamada M. , 2005. An experimental study on earthquake fault rupture propagation through a sandy soil deposit. Structural Engineering / Earthquake Engineering, 22(1): 1 s—13 s. doi: 10.2208/jsceseee.22.1s Lin M. L., Chung C. F., Jeng F. S., 2006. Deformation of overburden soil induced by thrust fault slip. Engineering Geology, 88(1—2): 70—89. Lin M. L., Chung C. F., Jeng F. S., et al., 2007. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels. Engineering Geology, 92(3—4): 110—132. Pan B. , 2018. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Measurement Science and Technology, 29(8): 082001. doi: 10.1088/1361-6501/aac55b Rechenmacher A. L. , Finno R. J. , 2004. Digital image correlation to evaluate shear banding in dilative sands. Geotechnical Testing Journal, 27(1): 13—22. Sabagh M. , Ghalandarzadeh A. , 2020. Centrifugal modeling of continuous shallow tunnels at active normal faults intersection. Transportation Geotechnics, 22: 100325. doi: 10.1016/j.trgeo.2020.100325 Take W. A. , 2015. Thirty-sixth Canadian geotechnical colloquium: advances in visualization of geotechnical processes through digital image correlation. Canadian Geotechnical Journal, 52(9): 1199—1220. doi: 10.1139/cgj-2014-0080 Wang W. L. , Wang T. T. , Su J. J. , et al. , 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and Underground Space Technology, 16(3): 133—150. doi: 10.1016/S0886-7798(01)00047-5