• ISSN 1673-5722
  • CN 11-5429/P

地震动和断层错动联合作用下隧道纵向响应解析解

彭述权 刘贤 樊玲 寻智泽 王国波 曾元凯 王成博

彭述权,刘贤,樊玲,寻智泽,王国波,曾元凯,王成博,2023. 地震动和断层错动联合作用下隧道纵向响应解析解. 震灾防御技术,18(2):215−225. doi:10.11899/zzfy20230202. doi: 10.11899/zzfy20230202
引用本文: 彭述权,刘贤,樊玲,寻智泽,王国波,曾元凯,王成博,2023. 地震动和断层错动联合作用下隧道纵向响应解析解. 震灾防御技术,18(2):215−225. doi:10.11899/zzfy20230202. doi: 10.11899/zzfy20230202
Peng Shuquan, Liu Xian, Fan Ling, Xun Zhize, Wang Guobo, Zeng Yuankai, Wang Chengbo. Analytical Solution for the Longitudinal Response of Tunnels under Combined Seismic-fault Misalignment[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 215-225. doi: 10.11899/zzfy20230202
Citation: Peng Shuquan, Liu Xian, Fan Ling, Xun Zhize, Wang Guobo, Zeng Yuankai, Wang Chengbo. Analytical Solution for the Longitudinal Response of Tunnels under Combined Seismic-fault Misalignment[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 215-225. doi: 10.11899/zzfy20230202

地震动和断层错动联合作用下隧道纵向响应解析解

doi: 10.11899/zzfy20230202
基金项目: 国家自然科学基金(52174100 );湖南省自然科学基金(2021JJ30834、2023JJ70030)
详细信息
    作者简介:

    彭述权,男,生于1977年。博士,教授。主要从事岩土工程、隧道工程方面的研究工作。E-mail:pqr97linger@csu.edu.cn

    通讯作者:

    樊玲,女,生于1977 年。博士,副教授。主要从事地下工程方面的教学和研究工作。E-mail:pqrfanlinger@csu.edu.cn

Analytical Solution for the Longitudinal Response of Tunnels under Combined Seismic-fault Misalignment

  • 摘要: 隧道穿越地震活动断层带时可能遭受严重破坏,以内马铁路一期三标段工程为依托,对地震动和断层错动联合作用下隧道结构纵向响应进行研究。针对穿越断层破碎带的隧道结构,基于地下结构抗震拟静力法,将其简化为弹性地基梁,并将地震动和断层错动位移简化为作用在隧道上的静荷载,建立地震动和断层错动联合作用下隧道纵向响应理论模型并进行求解,利用有限元数值模拟方法验证解析解的正确性。通过解析解进行参数敏感性分析,揭示断层错动位移、两侧围岩地基系数与断层破碎带地基系数比及围岩与隧道结构刚度比对隧道结构纵向响应的影响规律。研究结果表明,断层错动位移增加使隧道结构截面弯矩、剪力峰值接近线性增加,隧道内力沿隧道纵向分布的影响范围不变,且断层破碎带界面出现了截面剪力突变;两侧围岩地基系数与断层破碎带地基系数比对隧道结构截面剪力的影响较大,在地震动和断层错动联合作用下隧道结构剪力在断层破碎带界面急剧减小;随着围岩与隧道结构刚度比的减小,地震动引起的隧道挠度减小,断层错动作用引起的隧道挠度变化范围增大,同时隧道结构内力响应明显增大。
  • 图  1  地震动和断层错动联合作用下隧道响应示意

    Figure  1.  Schematic diagram of tunnel response under earthquake-fault dislocation

    图  2  地震波示意

    Figure  2.  Seismic wave diagram

    图  3  原型隧道断面

    Figure  3.  Tunnel prototype tunnel cross-section

    图  4  El Centro地震波加速度时程曲线

    Figure  4.  El Centro seismic wave acceleration time-history curve

    图  5  理论解析解与数值解隧道纵向变形及内力对比

    Figure  5.  Comparison of theoretical and numerical solutions for longitudinal deformation and internal forces in tunnels

    图  6  断层错动位移对隧道变形及内力的影响

    Figure  6.  Effect of fault misalignment changes on tunnel deformation and internal forces

    图  7  两侧围岩地基系数与断层破碎带地基系数比对隧道变形及内力的影响

    Figure  7.  Influence of fault fracture zone foundation coefficient on tunnel deformation and internal force

    图  8  围岩与隧道结构刚度比对隧道变形及内力的影响

    Figure  8.  Influence of tunnel structure and surrounding rock stiffness ratio on tunnel internal force deformation

    表  1  计算参数

    Table  1.   Calculation parameter table

    材料弹性模量/GPa围岩泊松比围岩密度/(kg·m−3地基系数/MPa隧道截面惯性矩/m4隧道宽度/m
    强风化粗面岩6.50.322 4001 083.4
    断层破碎带2.00.302 200332.7
    隧道衬砌35.00.20173.636.2
    下载: 导出CSV
  • 甘星球, 徐锋, 王晓伟等, 2021. 断层错动隧道地震响应规律及减震模拟研究. 现代隧道技术, 58(3): 100—106

    Gan X. Q. , Xu F. , Wang X. W. , et al. , 2021. Simulation study on seismic response laws and seismic mitigation measures of tunnels under fault dislocation. Modern Tunnelling Technology, 58(3): 100—106. (in Chinese)
    耿萍, 吴川, 唐金良等, 2012. 穿越断层破碎带隧道动力响应特性分析. 岩石力学与工程学报, 31(7): 1406—1413

    Geng P. , Wu C. , Tang J. L. , et al. , 2012. Analysis of dynamic response properties for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1406—1413. (in Chinese)
    何川, 李林, 张景等, 2014. 隧道穿越断层破碎带震害机理研究. 岩土工程学报, 36(3): 427—434

    He C. , Li L. , Zhang J. , et al. , 2014. Seismic damage mechanism of tunnels through fault zones. Chinese Journal of Geotechnical Engineering, 36(3): 427—434. (in Chinese)
    刘国钊, 乔亚飞, 何满潮等, 2020. 活动性断裂带错动下隧道纵向响应的解析解. 岩土力学, 41(3): 923—932

    Liu G. Z. , Qiao Y. F. , He M. C. , et al. , 2020. An analytical solution of longitudinal response of tunnels under dislocation of active fault. Rock and Soil Mechanics, 41(3): 923—932. (in Chinese)
    刘学增, 王煦霖, 林亮伦, 2013.75°倾角正断层黏滑错动对公路隧道影响的模型试验研究. 岩石力学与工程学报, 32(8): 1714—1720

    Liu X. Z. , Wang X. L. , Lin L. L. , 2013. Model experiment on effect of normal fault with 75° dip angle stick-slip dislocation on highway tunnel. Chinese Journal of Rock Mechanics and Engineering, 32(8): 1714—1720. (in Chinese)
    孙飞, 张志强, 易志伟, 2019. 正断层黏滑错动对地铁隧道结构影响的模型试验研究. 岩土力学, 40(8): 3037—3044, 3053

    Sun F. , Zhang Z. Q. , Yi Z. W. , 2019. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure. Rock and Soil Mechanics, 40(8): 3037—3044, 3053. (in Chinese)
    王明年, 崔光耀, 2011. 高烈度地震区隧道设置减震层的减震原理研究. 土木工程学报, 44(8): 126—131

    Wang M. N. , Cui G. Y. , 2011. Study of the mechanism of shock absorption layer in the supporting system of tunnels in highly seismic areas. China Civil Engineering Journal, 44(8): 126—131. (in Chinese)
    文鑫涛, 李华玥, 段乙好等, 2021. 2020年中国大陆地震灾害损失述评. 震灾防御技术, 16(4): 651—656.

    Wen X. T., Li H. Y., Duan Y. H., et al., 2021. Earthquake disasters loss on Chinese mainland in 2020. Technology for Earthquake Disaster Prevention, 16(4): 651−656. (in Chinese)
    闫高明, 申玉生, 高波等, 2019. 穿越黏滑断层分段接头隧道模型试验研究. 岩土力学, 40(11): 4450—4458

    Yan G. M. , Shen Y. S. , Gao B. , et al. , 2019. Experimental study of stick-slip fault crossing segmental tunnels with joints. Rock and Soil Mechanics, 40(11): 4450—4458. (in Chinese)
    张景, 何川, 耿萍等, 2017. 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究. 岩石力学与工程学报, 36(1): 68—77 doi: 10.13722/j.cnki.jrme.2016.0103

    Zhang J. , He C. , Geng P. , et al. , 2017. Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction. Chinese Journal of Rock Mechanics and Engineering, 36(1): 68—77. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0103
    Anastasopoulos I. , Gerolymos N. , Drosos V. , et al. , 2008. Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking. Bulletin of Earthquake Engineering, 6(2): 213—239. doi: 10.1007/s10518-007-9055-0
    Baziar M. H. , Nabizadeh A. , Lee C. J. , et al. , 2014. Centrifuge modeling of interaction between reverse faulting and tunnel. Soil Dynamics and Earthquake Engineering, 65: 151—164. doi: 10.1016/j.soildyn.2014.04.008
    Fan L. , Chen J. L. , Peng S. Q. , et al. , 2020. Seismic response of tunnel under normal fault slips by shaking table test technique. Journal of Central South University, 27(4): 1306—1319. doi: 10.1007/s11771-020-4368-0
    Hashash Y. M. A. , Hook J. J. , Schmidt B. , et al. , 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): 247—293. doi: 10.1016/S0886-7798(01)00051-7
    Liang L. J. , Xu C. J. , Zhu B. T. , et al. , 2020. Theoretical method for an elastic infinite beam resting on a deformable foundation with a local subsidence. Computers and Geotechnics, 127: 103740. doi: 10.1016/j.compgeo.2020.103740
    Shen Y. S. , Wang Z. Z. , Yu J. , et al. , 2020. Shaking table test on flexible joints of mountain tunnels passing through normal fault. Tunnelling and Underground Space Technology, 98: 103299. doi: 10.1016/j.tust.2020.103299
    St John C. M. , Zahrah T. F. , 1987. Aseismic design of underground structures. Tunnelling and Underground Space Technology, 2(2): 165—197. doi: 10.1016/0886-7798(87)90011-3
    Tsinidis G. , De Silva F. , Anastasopoulos I. , et al. , 2020. Seismic behaviour of tunnels: from experiments to analysis. Tunnelling and Underground Space Technology, 99: 103334. doi: 10.1016/j.tust.2020.103334
    Vesić A. B. , 1961. Bending of beams resting on isotropic elastic solid. Journal of the Engineering Mechanics Division, 87(2): 35—53. doi: 10.1061/JMCEA3.0000212
    Wang J. N., 1993. Seismic design of tunnels: a simple state-of-the-art design approach. New York: Parsons Brinckerhoff Quade & Douglas. Inc.
    Yan G. M. , Shen Y. S. , Gao B. , et al. , 2020. Damage evolution of tunnel lining with steel reinforced rubber joints under normal faulting: an experimental and numerical investigation. Tunnelling and Underground Space Technology, 97: 103223. doi: 10.1016/j.tust.2019.103223
    Yu H. T. , Zhang Z. W. , Chen J. T. , et al. , 2018. Analytical solution for longitudinal seismic response of tunnel liners with sharp stiffness transition. Tunnelling and Underground Space Technology, 77: 103—114. doi: 10.1016/j.tust.2018.04.001
    Zhen C. , Qian S. , Gui-Min Z. , et al. , 2022. Response and mechanism of a tunnel subjected to combined fault rupture deformation and subsequent seismic excitation. Transportation Geotechnics, 34: 100749. doi: 10.1016/j.trgeo.2022.100749
    Zhong Z. L. , Wang Z. , Zhao M. , et al. , 2020. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement. Tunnelling and Underground Space Technology, 104: 103527. doi: 10.1016/j.tust.2020.103527
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  70
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-04
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回