• ISSN 1673-5722
  • CN 11-5429/P

桩式地震表面波屏障减震试验与数值分析

郁雯 潘乐鹏 张文祥 魏宝川

郁雯,潘乐鹏,张文祥,魏宝川,2023. 桩式地震表面波屏障减震试验与数值分析. 震灾防御技术,18(1):164−170. doi:10.11899/zzfy20230117. doi: 10.11899/zzfy20230117
引用本文: 郁雯,潘乐鹏,张文祥,魏宝川,2023. 桩式地震表面波屏障减震试验与数值分析. 震灾防御技术,18(1):164−170. doi:10.11899/zzfy20230117. doi: 10.11899/zzfy20230117
Yu Wen, Pan Lepeng, Zhang Wenxiang, Wei Baochuan. Experimental Study and Numerical Analysis of Shock Absorption of Pile-type Seismic Surface Wave Barrier[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 164-170. doi: 10.11899/zzfy20230117
Citation: Yu Wen, Pan Lepeng, Zhang Wenxiang, Wei Baochuan. Experimental Study and Numerical Analysis of Shock Absorption of Pile-type Seismic Surface Wave Barrier[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 164-170. doi: 10.11899/zzfy20230117

桩式地震表面波屏障减震试验与数值分析

doi: 10.11899/zzfy20230117
基金项目: 河北省高等学校科学技术研究项目资助(ZC2023028);河北省高等学校科学技术研究青年基金项目(QN2021218);河北建筑工程学院创新基金(XY202210);张家口市2022年市级科技计划自筹经费项目(2221007A)
详细信息
    作者简介:

    郁雯,女,生于1981年。硕士,副教授。研究方向工程结构健康监测。E-mail:yuwen810224@163.com

Experimental Study and Numerical Analysis of Shock Absorption of Pile-type Seismic Surface Wave Barrier

  • 摘要: 在双层均质土地基条件下,以桩长和桩间距为参数,采用模型试验法和数值分析法研究屏障桩对地震表面波的减震效果。研究结果表明,设置屏障桩可有效减弱地震表面波在土体中的传播,使桩后方减震区域加速度响应明显减弱;屏障桩长度和间距均对地震表面波在土体中的传播影响显著;在桩长试验中,减震率变化同时受桩长和地基土层影响,实际工程中应根据地基中土层分布情况进行桩长设计;在桩间距试验中,减震区域减震率达46%~56%,桩间距宜取约1.5倍桩径。
  • 图  1  试验设备

    Figure  1.  Test equipment diagram

    图  2  试验场地

    Figure  2.  Map of proving ground

    图  3  场地布置

    Figure  3.  Site layout

    图  4  El Centro波加速度时程曲线

    Figure  4.  El Centro wave acceleration time history curve

    图  5  模型试验得到的不同桩长下减震率变化曲线

    Figure  5.  Variation curves of damping ratio under different pile lengths obtained from model test

    图  6  模型试验得到的不同桩间距下减震率变化曲线

    Figure  6.  Variation curves of damping ratio under different pile spacing obtained from model test

    图  7  有限元整体模型

    Figure  7.  Finite element overall model

    图  8  截面示意图

    Figure  8.  Schematic diagram of cross section

    图  9  峰值加速度云图

    Figure  9.  Cloud map of peak acceleration

    图  10  数值分析得到的不同桩长下减震率变化曲线

    Figure  10.  Curve of damping ratio under different pile lengths obtained by numerical analysis

    图  11  数值分析得到的不同桩间距下减震率变化曲线

    Figure  11.  Curve of damping ratio under different pile spacing obtained by numerical analysis

    表  1  试验变量

    Table  1.   Test variables

    桩长/m桩间距/m桩径/m
    0.20.100.1
    0.30.150.1
    0.40.200.1
    0.50.250.1
    0.60.300.1
    下载: 导出CSV

    表  2  模型试验得到的桩长减震效果

    Table  2.   Shock absorption effect of pile length obtained from model test

    工况桩长/m加速度平均值/(m·s−2加速度放大系数/%减震率/%
    无桩1.523100.00.0
    工况10.21.23881.318.7
    工况20.30.96363.236.8
    工况30.40.85956.443.6
    工况40.50.79752.347.7
    工况50.60.76550.249.8
    下载: 导出CSV

    表  3  模型试验得到的桩间距减震效果

    Table  3.   Seismic reduction effect of pile spacing obtained from model test

    工况桩间距/m加速度平均值/(m·s−2加速度放大系数/%减震率/%
    无桩1.523100.00.0
    工况10.100.66143.456.6
    工况20.150.73448.251.8
    工况30.200.96363.236.8
    工况40.251.08671.328.7
    工况50.301.23481.418.6
    下载: 导出CSV

    表  4  有限元材料参数

    Table  4.   Finite element material parameters

    材料厚度/m密度/(kg·m−3弹性模量/Pa泊松比瑞利阻尼系数α瑞利阻尼系数β
    2 2002.2×10100.200.434 530.002 07
    黏土层4.01 8506.0×1070.251.159 020.005 50
    砂土层8.01 7508.0×1070.301.150 230.005 30
    下载: 导出CSV

    表  5  数值分析得到的桩长减震效果

    Table  5.   Seismic reduction effect of pile length obtained by numerical analysis

    工况桩长/m加速度平均值/
    (m·s−2
    加速度放大
    系数/%
    减震率/%
    无桩1.421100.00.0
    工况12.01.18683.516.5
    工况23.01.02271.928.1
    工况34.00.89963.336.7
    工况45.00.81757.542.5
    工况56.00.78455.244.8
    下载: 导出CSV

    表  6  数值分析得到的桩间距减震效果

    Table  6.   Seismic reduction effect of pile spacing obtained by numerical analysis

    工况桩间距/m加速度平均值/
    (m·s−2
    加速度放大
    系数/%
    减震率/%
    无桩1.421100.00.0
    工况11.00.76954.145.9
    工况21.50.86460.839.2
    工况32.01.02271.928.1
    工况42.51.09176.823.2
    工况53.01.21585.514.5
    下载: 导出CSV
  • 陈一伟, 卓家桂, 王德军等, 2020. 基于WORKBENCH的核级三通阀门抗震分析研究. 核科学与工程, 40(6): 1014—1018

    Chen Y. W. , Zhuo J. G. , Wang D. J. , et al. , 2020. Seismic analysis of three-way valve nuclear class based on WORKBENCH. Nuclear Science and Engineering, 40(6): 1014—1018. (in Chinese)
    葛倩倩, 于桂兰, 2020. 有覆层土体中部分埋入式表面波屏障. 工程力学, 37(S1): 249—253

    Ge Q. Q. , Yu G. L. , 2020. A partially embedded periodic barrier for surface waves in soil with a covered layer. Engineering Mechanics, 37(S1): 249—253. (in Chinese)
    胡成宝, 王云岗, 凌道盛, 2017. 瑞利阻尼物理本质及参数对动力响应的影响. 浙江大学学报(工学版), 51(7): 1284—1290

    Hu C. B. , Wang Y. G. , Ling D. S. , 2017. Physical essence and influence of model parameters on dynamic response of Rayleigh damping. Journal of Zhejiang University (Engineering Science), 51(7): 1284—1290. (in Chinese)
    黄茂松, 任青, 周仁义等, 2009. 层状地基中瑞利波随深度的衰减特性. 岩土力学, 30(1): 113—117, 122 doi: 10.3969/j.issn.1000-7598.2009.01.018

    Huang M. S. , Ren Q. , Zhou R. Y. , et al. , 2009. Attenuation characters of Rayleigh wave in layered soils. Rock and Soil Mechanics, 30(1): 113—117, 122. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.01.018
    纪德鑫, 2021. 横观各向同性土中T形表面波屏障性能研究. 北京: 北京交通大学.

    Ji D. X., 2021. Research on the performance of T-shaped barrier for surface wave in transversely isotropic soil. Beijing: Beijing Jiaotong University. (in Chinese)
    姜山, 2018. 高速铁路路基及复合地基抗震性能分析. 北京: 北京交通大学.

    Jiang S., 2018. Analysis of seismic performance of high-speed railway subgrade and composite foundation. Beijing: Beijing Jiaotong University. (in Chinese)
    柳锦春, 还毅, 李建权, 2011. 人工边界及地震动输入在有限元软件中的实现. 地下空间与工程学报, 7(S2): 1774—1779

    Liu J. C. , Huan Y. , Li J. Q. , 2011. Application of artificial boundary and seismic input in general finite element software. Chinese Journal of Underground Space and Engineering, 7(S2): 1774—1779. (in Chinese)
    刘晶波, 李彬, 2006. Rayleigh波作用下地下结构的动力反应分析. 工程力学, 23(10): 132—135, 131 doi: 10.3969/j.issn.1000-4750.2006.10.025

    Liu J. B. , Li B. , 2006. Dynamic response analysis of underground structures during propagation of Rayleigh wave. Engineering Mechanics, 23(10): 132—135, 131. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.10.025
    刘岩钊, 尹首浮, 于桂兰, 2019. 周期格栅式表面波屏障的设计与性能研究. 工程力学, 36(S1): 324—328

    Liu Y. Z. , Yin S. F. , Yu G. L. , 2019. Design and investigation of periodic grid barriers for seismic surface waves. Engineering Mechanics, 36(S1): 324—328. (in Chinese)
    毛尚礼, 余湘娟, 张富有, 2010. 地基隔震减震机理研究. 华南地震, 30(3): 75—80 doi: 10.3969/j.issn.1001-8662.2010.03.010

    Mao S. L. , Yu X. J. , Zhang F. Y. , 2010. Studies on mechanism of ground's seismic isolation and shock absorption. South China Journal of Seismology, 30(3): 75—80. (in Chinese) doi: 10.3969/j.issn.1001-8662.2010.03.010
    王会娟, 王平, 于一帆等, 2018. 复杂土层结构黄土场地地震动反应特性. 自然灾害学报, 27(6): 75—82 doi: 10.13577/j.jnd.2018.0610

    Wang H. J. , Wang P. , Yu Y. F. , et al. , 2018. The effect of complex soil structure loess field on earthquake ground motion. Journal of Natural Disasters, 27(6): 75—82. (in Chinese) doi: 10.13577/j.jnd.2018.0610
    王立安, 赵建昌, 余云燕, 2020. 瑞利波在非均匀饱和地基中的传播特性. 岩土力学, 41(6): 1983—1990, 2000 doi: 10.16285/j.rsm.2019.1236

    Wang L. A. , Zhao J. C. , Yu Y. Y. , 2020. Propagation characteristics of Rayleigh wave in non-homogeneous saturated foundation. Rock and Soil Mechanics, 41(6): 1983—1990, 2000. (in Chinese) doi: 10.16285/j.rsm.2019.1236
    吴忠铁, 范萍萍, 杜永峰等, 2020. 地震波参数对柱顶隔震体系的水平向减震性能影响研究. 世界地震工程, 36(4): 17—24

    Wu Z. T. , Fan P. P. , Du Y. F. , et al. , 2020. Study on influence of seismic wave parameters on horizontal seismic mitigation performance of column top isolation system. World Earthquake Engineering, 36(4): 17—24. (in Chinese)
    杨长卫, 童心豪, 王栋等, 2020. 地震作用下有砟轨道路基动力响应规律振动台试验. 岩土力学, 41(7): 2215—2223 doi: 10.16285/j.rsm.2019.1495

    Yang C. W. , Tong X. H. , Wang D. , et al. , 2020. Shaking table test of dynamic response law of subgrade with ballast track under earthquake. Rock and Soil Mechanics, 41(7): 2215—2223. (in Chinese) doi: 10.16285/j.rsm.2019.1495
    曾桂香, 黄慧, 2008. 混凝土结构基础隔震技术及其应用. 自然灾害学报, 17(2): 127—130 doi: 10.3969/j.issn.1004-4574.2008.02.023

    Zeng G. X. , Huang H. , 2008. Vibration isolation technology and its application to concrete structure foundation. Journal of Natural Disasters, 17(2): 127—130. (in Chinese) doi: 10.3969/j.issn.1004-4574.2008.02.023
    周慧, 宋君晗, 罗松南, 2012. 地震表面波引起高桥墩的动力屈曲分析. 湖南大学学报(自然科学版), 39(10): 14—19 doi: 10.3969/j.issn.1674-2974.2012.10.003

    Zhou H. , Song J. H. , Luo S. N. , 2012. Dynamic buckling of the high pier under the surface wave by earthquake. Journal of Hunan University (Natural Sciences), 39(10): 14—19. (in Chinese) doi: 10.3969/j.issn.1674-2974.2012.10.003
    Brûlé S, Javelaud E H, Enoch S, et al. , 2014. Experiments on seismic metamaterials: molding surface waves. Physical Review Letters, 112(13): 133901. doi: 10.1103/PhysRevLett.112.133901
    Pu X. B. , Shi Z. F. , 2018. Surface-wave attenuation by periodic pile barriers in layered soils. Construction and Building Materials, 180: 177—187. doi: 10.1016/j.conbuildmat.2018.05.264
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  16
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回