• ISSN 1673-5722
  • CN 11-5429/P

地震动持时在工程抗震设计中的研究现状与展望

王志涛 王巨 郭小东

刘洪涛,孔鹏超,王作虎,廖维张,2022. 钢筋混凝土预制拼装柱扭转力学性能数值模拟与参数分析. 震灾防御技术,17(2):372−380. doi:10.11899/zzfy20220217. doi: 10.11899/zzfy20220217
引用本文: 王志涛,王巨,郭小东,2023. 地震动持时在工程抗震设计中的研究现状与展望. 震灾防御技术,18(1):147−163. doi:10.11899/zzfy20230116. doi: 10.11899/zzfy20230116
Liu Hongtao, Kong Pengchao, Wang Zuohu, Liao Weizhang. Numerical Simulation and Parameter Analysis of Torsion Mechanical Properties of Reinforced Concrete Precast Assembly Columns[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 372-380. doi: 10.11899/zzfy20220217
Citation: Wang Zhitao, Wang Ju, Guo Xiaodong. Research Status and Prospect of Earthquake Duration in Engineering Anti-seismic Design[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 147-163. doi: 10.11899/zzfy20230116

地震动持时在工程抗震设计中的研究现状与展望

doi: 10.11899/zzfy20230116
基金项目: 中国地震局工程力学研究所基本科研业务费专项(2019 EEEVL0501)
详细信息
    作者简介:

    王志涛,男,生于1980年。博士,副教授。主要从事抗震防灾研究。E-mail:wzt@bjut.edu.cn

    通讯作者:

    王巨,男,生于1993年。硕士研究生。主要从事抗震防灾研究。E-mail:15533909834@163.com

Research Status and Prospect of Earthquake Duration in Engineering Anti-seismic Design

  • 摘要: 长持时地震动对工程场地震害和建筑结构累积损伤具有不利影响,在工程结构抗震设计中选取地震波时,应充分考虑地震动持时的影响。通过文献梳理,对几类典型的地震动持时定义进行阐述,分析其特点与适用性,并总结持时影响因素及预测方程的研究进展。基于持时对结构抗震性能的影响,总结考虑持时的抗震设计方法研究现状,分析存在的问题,并对研究方向进行展望。
  • 灌浆套筒已广泛用于连接预制构件,学者们(高林等,2016杜修力等,2017刘洪涛等,2017马军卫等,2017)对其抗压、抗弯及抗剪等力学性能进行了大量试验和理论研究。随着城镇化的发展,大型地下结构相应地提高了设防标准,同时提出了韧性设计思想(杜修力等,2018a2019)。然而,在实际工程实践中,多维地震的耦合作用会使构件发生扭转效应(孙宪春等,2008李旭红等,2011)。灌浆套筒连接的预制构件整体性能较好,但由于灌浆套筒刚度较大,使构件沿高度方向的刚度分布不均匀(Rave-Arango等,2018),造成结构抗震性能降低。装配式结构损伤主要集中在预制构件连接部位,结构破坏主要取决于节点损伤程度(林才元等,2008)。然而,目前关于灌浆套筒连接预制节点扭转力学性能的研究较少。

    《混凝土结构设计规范》(GB 50010—2010)(中华人民共和国住房和城乡建设部等,2011)中已明确给出现浇钢筋混凝土矩形截面纯扭承载力表达式:

    $$ T \leqslant 0.35{f_{\rm{t}}}{W_{\rm{t}}} + 1.2\sqrt \xi {f_{{\rm{yv}}}}\frac{{{A_{{\rm{st1}}}}{A_{{\rm{cor}}}}}}{s} $$ (1)

    式中,T为扭矩设计值,$ {f}_{\mathrm{t}} $为混凝土轴心抗拉强度设计值,$ {W}_{\mathrm{t}} $为截面受扭塑性抵抗矩,$ \xi $为普通纵筋与箍筋的强度比值,$ {f}_{\mathrm{y}\mathrm{v}} $为箍筋抗拉强度设计值,$ {A}_{\mathrm{s}\mathrm{t}1} $为截面周边配置的箍筋单肢截面面积,$ {A}_{\mathrm{c}\mathrm{o}\mathrm{r}} $为截面核心部分的面积,$ s $为箍筋间距。

    由式(1)可知,钢筋混凝土构件截面抗扭承载力可分为2部分,第1部分为$ 0.35{f}_{\mathrm{t}}{W}_{\mathrm{t}} $,可看作钢筋混凝土构件中的混凝土贡献部分;第2部分为$ 1.2\sqrt{\xi }{f}_{\mathrm{y}\mathrm{v}}{A}_{\mathrm{s}\mathrm{t}1}{A}_{\mathrm{c}\mathrm{o}\mathrm{r}}/s $,可看作截面内纵筋和箍筋组成的骨架贡献值。灌浆套筒增加了预制拼装柱局部刚度,而预制拼装构件的拼装结合面会削弱构件刚度;灌浆套筒截面会显著提高钢筋部分对构件抗扭的贡献,而拼接缝会显著削弱混凝土的抗扭承载力。这种耦合效应使灌浆套筒连接的预制构件受力更为复杂,而规范中未明确给出灌浆套筒连接构件抗扭承载力的相关说明。因此,有必要研究灌浆套筒连接预制构件扭转问题。基于此,笔者在验证构件数值模型准确性的基础上,研究了轴压比、灌浆套筒位置及长度、预制构件拼接缝界面黏结强度对灌浆套筒连接中柱抗扭性能的影响,并与现浇整体柱抗扭性能进行对比分析。

    以拟静力试验足尺预制拼装柱(杜修力等,2018b)为例,中柱截面尺寸为700 mm×900 mm,高度为2760 mm,普通截面钢筋直径为28 mm,灌浆套筒截面直径为56 mm,箍筋直径为12 mm,灌浆套筒的存在导致截面保护层厚度略有降低,构件具体参数可参考相关文献(杜修力等,2018b),现浇整体柱和预制拼装柱的截面如图1所示。

    图 1  钢筋混凝土柱截面示意
    Figure 1.  Schematic diagram of common section and sleeve section

    为体现灌浆套筒对钢筋混凝土构件力学性能的影响,采用抗弯和抗压等效原则,对灌浆套筒截面进行简化(杜修力等,2017)。混凝土和灌浆套筒采用实体单元(C3D8R)模拟,灌浆套筒及内部的灌浆料可看作为理想弹塑性材料,其屈服强度为400 MPa。混凝土材料强度等级为C50,立方体抗压强度和轴心抗压强度分别为55.9、36.0 MPa。混凝土采用ABAQUS软件自带的弹塑性损伤模型(CDP)模拟,应力-应变关系曲线(图2(a))可结合《混凝土结构设计规范》(GB 50010—2010)附录C确定,剪胀角φ为45°,流动势偏移量ε为0.1,双轴受压与单轴受压极限强度比σb0/σc0为1.16,不变量应力K为0.666667,黏滞系数μ为0.003。

    图 2  材料应力-应变关系曲线
    Figure 2.  Material stress-strain relationship curve

    钢筋采用桁架单元(T3D2)模拟,材料属性采用理想弹塑性模型,应力-应变关系曲线如图2(b)所示。钢筋与周围混凝土采用埋入(Embedded)接触关系,不考虑钢筋与混凝土之间的滑移效应。固定构件的底部,在柱顶施加转角变形。预制拼装构件模型及边界条件如图3所示。

    图 3  计算模型及边界条件
    Figure 3.  Calculation model and boundary conditions

    以设计轴压比0.5为例,对数值模拟分析结果与试验结果进行对比,如图4所示。由于未考虑钢筋与混凝土之间的滑移效应,仅对比构件骨架曲线。由图4可知,数值模型承载力和变形与物理试验结果基本吻合,最大承载力误差约为4.2%,表明本研究建立的模型可较准确地反映现浇整体柱和预制拼装柱力学性能。在数值模型的基础上,改变构件顶部荷载形式,研究预制拼装柱和现浇整体柱抗扭性能。

    图 4  数值模拟骨架曲线与试验骨架曲线对比
    Figure 4.  Comparison between numerical simulation and experiment backbone curves

    钢筋混凝土柱扭转力学性能受多因素影响,分别研究轴压比、灌浆套筒位置及长度、预制构件拼接缝界面黏结强度的影响。构件设计轴压比为0.1~0.9;灌浆套筒设置在中柱底部塑性区内,分别位于构件底部(20 mm为垫浆层厚度)、距底部300、600 mm处;灌浆套筒长度分别为300、600、900 mm。以YZ05-20-300为例说明预制构件编号规则,YZ表示预制构件,05表示设计轴压比为0.5,20表示灌浆套筒距底座的距离为20 mm,300表示灌浆套筒长度为300 mm。以XJ01为例说明现浇构件编号规则,XJ表示现浇构件,01表示设计轴压比为0.1。

    (1)荷载-变形曲线

    以300 mm长灌浆套筒位于中柱底部为例,分别提取不同轴压比下各构件加载点处(柱顶)扭矩-转角关系曲线,如图5所示。随着轴压比的增加,现浇整体柱和预制拼装柱抗扭承载力呈增加趋势,但加载后期抗扭承载力呈降低趋势;加载前期,现浇整体柱和预制拼装柱抗扭承载力变化趋势基本一致,加载后期,现浇整体柱扭矩-转角关系曲线略低于预制拼装柱。加载初期,混凝土和钢筋骨架共同承担荷载,扭矩-转角关系曲线斜率较大;随着加载的进行,混凝土逐渐发生损伤,并退出受力过程,此时钢筋骨架承担扭矩作用;加载后期,钢筋骨架逐渐发生屈服,抗扭承载力下降。当轴压比为0.1时,构件抗扭承载力经历上升、下降、上升阶段,这是因为轴向荷载较小,拼装接触面达到界面黏结强度时,接触面混凝土不再起抗扭作用,此时接触面钢筋有受拉趋势,导致预制拼装柱抗扭承载力提高。随着轴压比的增加,接缝处钢筋受拉趋势越来越不明显。

    图 5  构件扭矩-转角关系曲线
    Figure 5.  Relationship curves of torque and rotation angle

    分别提取各构件抗扭承载力最大值,得到构件峰值承载力与轴压比关系曲线,如图6所示。由图6可知,现浇整体柱和预制拼装柱峰值承载力均随着轴压比的增加而增大,相同轴压比下,现浇整体柱和预制拼装柱峰值承载力基本一致。以荷载降为峰值荷载的85%为破坏状态,绘制构件破坏时刻转角-轴压比关系曲线,如图7所示。由图7可知,随着轴压比的增加,破坏转角逐渐降低;相同轴压比下,随着灌浆套筒距底座距离的增加,破坏转角逐渐增加,且随着轴压比的增加,破坏转角增幅逐渐减小,说明灌浆套筒对钢筋混凝土柱抗扭承载力的影响不明显,但会影响构件变形能力。

    图 6  构件峰值承载力-设计轴压比关系曲线
    Figure 6.  Relationship curve of peak bearing capacity and axial compression ratio
    图 7  破坏时刻构件转角-设计轴压比关系曲线
    Figure 7.  Relationship curves of rotation angle and axial pressure ratio

    (2)变形分布

    为研究预制拼装柱在扭转荷载作用下的扭转变形分布,以现浇整体柱和300 mm长灌浆套筒位于构件底部的预制拼装柱为例,提取沿柱高方向的转角变形,如图8所示。由图8可知,柱顶端转角最大,柱底部转角最小;沿柱高方向转角近似呈线性变化,轴压比和灌浆套筒对转角变形分布的影响不明显,可知灌浆套筒使中柱刚度变化对整体扭转变形分布的影响不明显。

    图 8  构件转角变形分布
    Figure 8.  Distribution of component rotation angle deformation

    (3)破坏形态

    以轴压比为0.2为例,分别提取现浇整体柱和300 mm长灌浆套筒位于构件底部的预制拼装柱破坏时刻应变云图,如图9所示。由图9可知,构件四面中轴线位置处变形最明显。由于灌浆套筒刚度较大,导致构件塑性铰上移。

    图 9  构件等效塑性应变云图
    Figure 9.  PEEQ nephogram of components

    灌浆套筒位置是影响预制构件现场拼装连接的重要因素,同时影响了预制构件塑性铰分布。为此,分别建立灌浆套筒距底座20、300、600 mm的数值分析模型。以轴压比0.5、0.7为例进行说明,灌浆套筒位置对构件抗扭性能的影响如图10所示。由图10(a)可知,相同轴压比下,灌浆套筒位置对预制拼装柱抗扭承载力的影响不明显。

    图 10  灌浆套筒位置对构件抗扭性能的影响
    Figure 10.  Influence of sleeve position on torsion resistance

    图10(b)可知,随着柱高的增加,转角逐渐增大。灌浆套筒位置不同,即中柱沿轴线方向的刚度分布不同,转角沿柱高方向基本呈线性变化,说明灌浆套筒刚度对中柱局部转角的影响有限。

    由于灌浆套筒截面面积远大于所连接钢筋截面面积,适当增加灌浆套筒长度,可在一定程度上提高预制拼装柱塑性区刚度和强度。为此,分别研究灌浆套筒不同长度(300、600、900 mm)对预制拼装柱抗扭承载力的影响,结果如图11所示。由图11可知,加载前期,灌浆套筒长度对构件抗扭承载力的影响不明显;加载后期,随着灌浆套筒长度的增加,抗扭承载力-转角关系曲线下降趋势明显变缓,说明构件延性逐渐增加。在轴压比0.8和0.5作用下,灌浆套筒长度为900 mm的试件比灌浆套筒长度为300 mm试件的破坏转角分别提高了6.9%和3.0%。

    图 11  灌浆套筒长度对抗扭承载力的影响
    Figure 11.  Influence of grouted sleeve length on torsion bearing capacity

    除灌浆套筒刚度的影响外,预制拼装柱拼接缝界面黏结强度也是影响预制拼装构件力学性能的重要因素。预制拼装柱与底座切向采用Cohesive接触,其力学分析模型见刘洪涛(2018)的研究,完全破坏点应变取10倍的初始破坏应变,法向采用硬接触的方式。构件编号及参数如表1所示,以设计轴压比0.5为例,研究预制构件拼接缝界面黏结强度对预制拼装柱扭转力学性能的影响,结果如图12所示。

    表 1  构件编号及参数
    Table 1.  Component numbers and parameters
    构件编号设计轴压比切线强度1/MPa切线强度2/MPa
    YZC05-10.50.0160.016
    YZC05-20.50.1600.160
    YZC05-30.50.6600.660
    YZC05-40.51.6001.600
    YZC05-50.52.6002.600
    YZC05-60.53.6003.600
    YZC05-70.55.6005.600
    下载: 导出CSV 
    | 显示表格
    图 12  预制构件拼接缝界面黏结强度对预制拼装柱扭转力学性能的影响
    Figure 12.  Influence of bond strength of precast components on torsion and rotation properities of precast assembled columns

    图12(a)可知,拼接缝界面黏结强度较低的构件,抗扭承载力-转角关系曲线出现平台段,随着黏结强度的增加,平台段对应的扭矩逐渐增加。由曲线变化趋势可知,预制拼装柱截面抗扭承载力主要由混凝土和钢筋骨架承担,当荷载达预制拼装构件拼接缝界面黏结强度时,混凝土承担的扭矩失效,此时曲线出现平台段;随着拼接缝界面黏结强度的提高,平台段对应的转角逐渐增大,此后钢筋骨架起抗扭作用,随着变形的增加,钢筋发生屈服,承载力下降。

    图12(b)可知,随着柱顶变形的增加,预制构件拼接缝转角逐渐增加,并逐渐趋于平缓。随着拼接缝界面黏结强度的增加,拼接缝转角逐渐减小,且转折处柱端变形逐渐减小。当黏结强度较高时(如构件YZC05-7),拼接缝最大转角仅为总变形的4.4%,而当黏结强度较小时(如构件YZC05-1),构件变形全部由拼接缝承担。因此,计算预制拼装构件抗扭承载力时,需验算接触面黏结强度。当接触面黏结强度较大时,预制拼装柱连接区域抗扭承载力可等同于现浇整体柱(如构件XJ05-1和构件YZ05-7)。

    轴向荷载会增加钢筋混凝土构件抗扭承载力,《混凝土结构设计规范》(GB 50010—2010)中明确给出了轴向荷载作用下矩形截面钢筋混凝土柱抗扭承载力计算公式:

    $$ T \leqslant \left(0.35{f_{\rm{t}}} + 0.07\frac{N}{A}\right){W_{\rm{t}}} + 1.2\sqrt \xi {f_{{\rm{yv}}}}\frac{{{A_{{\rm{st1}}}}{A_{{\rm{cor}}}}}}{s} $$ (2)

    式中,N为轴向压力设计值,A为受扭构件截面面积。

    与纯扭构件截面抗扭力学性能相比,轴向荷载作用下,钢筋混凝土构件截面抗扭承载力由钢筋和混凝土共同承担,轴向荷载相当于增加了截面混凝土抗扭能力。预制拼装柱抗扭承载力约为设计值的1.5倍。因此,在保证拼接缝界面黏结强度足够的情况下,灌浆套筒连接的预制拼装柱抗扭能力是安全的,可参考现浇整体柱抗扭承载力进行设计。

    在灌浆套筒连接预制拼装柱足尺试验的基础上,开展了预制拼装柱抗扭性能数值模拟和参数分析,研究了轴压比、灌浆套筒位置及长度、预制构件拼接缝界面黏结强度对灌浆套筒连接中柱抗扭性能的影响,并分析了轴向荷载和扭矩共同作用下预制拼装柱抗扭承载力设计方法,得出以下结论:

    (1)随着轴压比的增加,预制拼装柱抗扭承载力提高,破坏时刻的抗扭变形逐渐降低;

    (2)灌浆套筒位置及长度对预制拼装柱抗扭性能的影响不明显,灌浆套筒长度会影响预制拼装柱后期的扭转变形;

    (3)预制构件接触面黏结强度会显著影响预制拼装柱抗扭性能,应保证预制构件具有足够黏结强度;

    (4)在保证拼接缝界面黏结强度足够的情况下,预制拼装柱抗扭承载力设计方法可参考现浇整体柱。

  • 表  1  我国典型地震动持时预测模型

    Table  1.   Domestic typical ground motion duration prediction model

    预测模型名称预测方程说明
    田文通模型 ${D_{{\rm{rs}}} } = {c_0} + {c_1}R + \sigma$ ${D_{{\rm{rs}}} }$为90%重要持时,$ R $为震中距,$ \sigma $为标准差,对水平向和竖向持时分别进行回归分析。
    白玉柱模型 $\lg {D_{{\rm{rs}}} } = {c_0} + {c_1}\ln {R_{{\rm{rup}}} } + \sigma$ ${D_{{\rm{rs}}} }$为90%重要持时,对水平向和竖向持时分别进行回归分析。
    任叶飞模型 $D = {c_0} + {c_1}{R_{{\rm{rup}}} } + \sigma$ D为70%、90%重要持时和加速度阈值为0.025 g、0.05 g、0.1 g的绝对括号持时。
    刘浪模型 $\lg {D_{{\rm{rs}}} } = {b_0} + {b_1}{R_{{\rm{rup}}} } + {b_2}\lg {R_{{\rm{rup}}} } + \sigma$ ${D_{{\rm{rs}}} }$为70%、90%重要持时,对上盘区、下盘区水平向和竖向持时分别进行回归。
    霍俊荣模型 $\lg Y = a + bM + c\lg \left( {R + {R_0}} \right) + \sigma $ Y为地震动参数,主要用于地震安全性评价中地震动时程包络曲线平台段起点、平台段长度和下降段衰减因子的估计。
    王亚勇模型 $\lg {D_{{\rm{rs}}} } = a + bM + c\lg \left( {R + 30} \right) + {\rm{d}}T$ ${D_{{\rm{rs}}} }$为90%重要持时,T为场地卓越周期,$T = { {4 H} / { { {\overline V}_{\rm{s}}} } }$,${ {\overline V}_{\rm{s} } } = { {\displaystyle\sum\limits_i { {V_{{\rm{s}}i} }{h_i} } }/H}$, ${h}_{i}、{V}_{{\rm{s}}i}$分别为第$ i $层土厚度和剪切波速,H为场地覆盖层厚度。
    徐培彬模型 Bommer-Stafford-Alarcon模型 基于中国强震记录对水平向70%、90%重要持时进行回归。
    注:表中未说明的参数均为回归系数。
    下载: 导出CSV
  • 白玉柱, 徐锡伟, 2017. 由强震动数据分析芦山地震地面运动持时及周期特征. 地震地质, 39(1): 92—103

    Bai Y. Z. , Xu X. W. , 2017. Analysis on the characteristics of duration and period of ground motion of the Lushan earthquake based on the station records. Seismology and Geology, 39(1): 92—103. (in Chinese)
    鲍文博, 付亮华, 陆海燕等, 2015. 钢混框剪高层结构地震能量分布及耗散研究. 建筑科学与工程学报, 32(3): 38—45

    Bao W. B. , Fu L. H. , Lu H. Y. , et al. , 2015. Research on seismic energy distribution and dissipation of reinforced concrete frame-wall high-rise structure. Journal of Architecture and Civil Engineering, 32(3): 38—45. (in Chinese)
    陈亮, 李建中, 管仲国等, 2008. 强地面运动持时对钢筋混凝土桥墩地震需求的影响. 振动与冲击, 27(11): 154—159

    Chen L. , Li J. Z. , Guan Z. G. , et al. , 2008. Influence of strong-motions duration on seismic inelastic demand for columns of RC bridges. Journal of Vibration and Shock, 27(11): 154—159. (in Chinese)
    陈永祁, 1986. 地震动持时和结构弹塑性耗能的关系. 地震研究, 9(2): 185—196.

    Chen Y. Q. , 1986. Relationship between earthquake strong motion duration and structural dissipated energy. Journal of Seismological Research, 9(2): 185—186. (in Chinese)
    程光煜, 叶列平, 2007 a. 弹塑性SDOF系统累积滞回耗能谱. 工程抗震与结构加固, 29(2): 1—7

    Cheng G. Y. , Ye L. P. , 2007 a. Cumulative hysteretic energy spectra of SDOF systems. Earthquake Resistant Engineering and Retrofitting, 29(2): 1—7. (in Chinese)
    程光煜, 叶列平, 2007 b. 弹塑性MDOF系统地震输入能量研究. 工程抗震与加固改造, 29(6): 29—35

    Cheng G. Y. , Ye L. P. , 2007 b. Earthquake energy input of inelastic MDOF systems. Earthquake Resistant Engineering and Retrofitting, 29(6): 29—35. (in Chinese)
    程光煜, 叶列平, 2008. 弹塑性SDOF系统的地震输入能量谱. 工程力学, 25(2): 28—39

    Cheng G. Y. , Ye L. P. , 2008. Earthquake input energy sprctrum for inelastic SDOF systems. Engineering Mechanics, 25(2): 28—39. (in Chinese)
    傅剑平, 王敏, 白绍良, 2005. 对用于钢筋混凝土结构的Park—Ang双参数破坏准则的识别和修正. 地震工程与工程振动, 25(5): 73—79

    Fu J. P. , Wang M. , Bai S. L. , 2005. Identification and modification of the park—Ang criterion for failure of RC structures. Earthquake Engineering and Engineering Vibration, 25(5): 73—79. (in Chinese)
    韩建平, 孙小云, 周颖, 2016. 基于规范谱拟合的人工地震动持时对RC框架结构抗倒塌能力影响. 建筑结构学报, 37(7): 121—126

    Han J. P. , Sun X. Y. , Zhou Y. , 2016. Effect of code-spectrum-matched artificial ground motion duration on collapse resistance capacity of RC frame. Journal of Building Structures, 37(7): 121—126. (in Chinese)
    胡进军, 2009. 近断层地震动方向性效应及超剪切破裂研究. 哈尔滨: 中国地震局工程力学研究所.

    Hu J. J., 2009. Directivity effect of near-fault ground motion and super-shear rupture. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    胡聿贤, 2006. 地震工程学. 北京: 地震出版社.

    Hu Y. X., 2006. Earthquake engineering. Beijing: Seismological Press. (in Chinese)
    霍俊荣, 胡聿贤, 冯启民, 1991. 地面运动时程强度包络函数的研究. 地震工程与工程振动, 11(1): 1—12

    Huo J. R. , Hu Y. X. , Feng Q. M. , 1991. Study on envelope function of acceleration time history. Earthquake Engineering and Engineering Vibration, 11(1): 1—12. (in Chinese)
    冀昆, 2018. 我国不同抗震设防需求下的强震动记录选取研究. 哈尔滨: 中国地震局工程力学研究所.

    Ji K., 2018. Strong ground motion selection for multiple levels of seismic fortification demand in China. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    李沣泰, 2013. 高层建筑框架—核心筒混合结构地震能量反应及损伤评估. 西安: 西安建筑科技大学.

    Li F. T., 2013. Seismic energy response and behavior assessment of frame-corewall hybrid structures. Xi'an: Xi'an University of Architecture and Technology. (in Chinese)
    李仕栋, 2004. 地震波时频反应谱分析方法的初步研究. 上海: 同济大学.
    刘纲, 2002. 抗震框架结构能量反应的初步分析. 重庆: 重庆大学.

    Liu G., 2002. Analysis of energy response in aseismatic frame structures. Chongqing: Chongqing University. (in Chinese)
    刘浪, 2010. 汶川地震地震动衰减特性分析. 哈尔滨: 中国地震局工程力学研究所.

    Liu L., 2010. Analysis about characteristics of ground motion attenuation of Wenchuan earthquake. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    刘浪, 李小军, 彭小波, 2011. 汶川地震中强震动相对持时的空间变化特性研究. 地震学报, 33(6): 809—816

    Liu L. , Li X. J. , Peng X. B. , 2011. Study on relative duration of strong motions during the great Wenchuan earthquake. Acta Seismologica Sinica, 33(6): 809—816. (in Chinese)
    刘哲锋, 沈蒲生, 2006. 地震动输入能量谱的研究. 工程抗震与加固改造, 28(4): 1—5 doi: 10.3969/j.issn.1002-8412.2006.04.001

    Liu Z. F. , Shen P. S. , 2006. Study on input energy spectra of earthquake strong motion. Earthquake Resistant Engineering and Retrofitting, 28(4): 1—5. (in Chinese) doi: 10.3969/j.issn.1002-8412.2006.04.001
    卢书楠, 翟长海, 谢礼立, 2013. 汶川地震中强震持时的特征研究. 地震工程与工程振动, 33(2): 1—7

    Lu S. N. , Zhai C. H. , Xie L. L. , 2013. Characteristics of duration of ground motion during the Wenchuan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 33(2): 1—7. (in Chinese)
    马小燕, 2010. 长持时与多波包地震动作用下的结构反应. 哈尔滨: 中国地震局工程力学研究所.

    Ma X. Y., 2010. Structure dynamic responses under long-duration and multi-wave packets ground motion. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    缪志伟, 2009. 钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究. 北京: 清华大学.

    Miao Z. W., 2009. Study on energy-based seismic design methodology for reinforced concrete frame-shear wall structures. Beijing: Tsinghua University. (in Chinese)
    缪志伟, 马千里, 叶列平, 2013. 钢筋混凝土框架结构基于能量抗震设计方法研究. 建筑结构学报, 34(12): 1—10

    Miao Z. W. , Ma Q. L. , Ye L. P. , 2013. Study on energy-based seismic design method of reinforced concrete frame structures. Journal of Building Structures, 34(12): 1—10. (in Chinese)
    牛荻涛, 任利杰, 1996. 改进的钢筋混凝土结构双参数地震破坏模型. 地震工程与工程振动, 16(4): 44—54

    Niu D. T. , Ren L. J. , 1996. A modified seismic damage model with double variables for reinforced concrete structures. Earthquake Engineering and Engineering Vibration, 16(4): 44—54. (in Chinese)
    欧进萍, 牛荻涛, 王光远, 1991. 非线性抗震钢结构的模糊动力可靠性分析与设计. 哈尔滨建筑工程学院学报, 24(1): 9—20

    Ou J. P. , Niu D. T. , Wang G. Y. , 1991. Fuzzy dynamical reliability analysis and design of nonlinear aseismic steel structures. Journal of Harbin University of Civil Engineering and Architecture, 24(1): 9—20. (in Chinese)
    钱向东, 崔赛飞, 程玉瑶, 2015. 由地震危险性分析估计场地地震动持时. 三峡大学学报(自然科学版), 37(3): 1—4

    Qian X. D. , Cui S. F. , Cheng Y. Y. , 2015. Prediction of ground motion duration based on seismic hazard analysis. Journal of China Three Gorges University (Natural Sciences), 37(3): 1—4. (in Chinese)
    曲国岩, 俞瑞芳, 2018. 基于时-频包线的非平稳地震动合成及其对结构非线性响应的影响. 振动工程学报, 31(2): 198—208

    Qu G. Y. , Yu R. F. , 2018. Simulation method of earthquake ground motion based on frequency-dependent amplitude envelope function and its influence on the structural nonlinear responses. Journal of Vibration Engineering, 31(2): 198—208. (in Chinese)
    任叶飞, 温瑞智, 周宝峰等, 2014.2013年4月20日四川芦山地震强地面运动三要素特征分析. 地球物理学报, 57(6): 1836—1846

    Ren Y. F. , Wen R. Z. , Zhou B. F. , et al. , 2013. The characteristics of strong ground motion of Lushan earthquake on April 20, 2013. Chinese Journal of Geophysics, 57(6): 1836—1846. (in Chinese)
    盛明强, 罗奇峰, 刘建成等, 2007. 考虑场地类别与强震持时的滞回耗能谱的特征分析. 地震研究, 30(2): 169—174

    Sheng M. Q. , Luo Q. F. , Liu J. C. , et al. , 2007. Hysteretic energy spectra considering site type and duration of strong ground motion. Journal of Seismological Research, 30(2): 169—174. (in Chinese)
    史庆轩, 熊仲明, 李菊芳, 2005. 框架结构滞回耗能在结构层间分配的计算分析. 西安建筑科技大学学报(自然科学版), 37(2): 174—178, 188 doi: 10.3969/j.issn.1006-7930.2005.02.006

    Shi Q. X. , Xiong Z. M. , Li J. F. , 2005. Calculation analysis of the story distribution of hysteretic energy for frame structures. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 37(2): 174—178, 188. (in Chinese) doi: 10.3969/j.issn.1006-7930.2005.02.006
    宋雅桐, 朱继澄, 1983. 地震动持时对多层结构反应的影响. 地震工程与工程振动, 3(4): 49—59

    Song Y. T. , Zhu J. C. , 1983. Effect of ground motion duration on earthquake response of multistory structures. Earthquake Engineering and Engineering Vibration, 3(4): 49—59. (in Chinese)
    孙佳明, 赵艳, 王文仲等, 2009. 震中矩对竖直向地震动持时的影响. 佳木斯大学学报(自然科学版), 27(4): 493—494

    Sun J. M. , Zhao Y. , Wang W. Z. , et al. , 2009. Influence of epicenter distance on vertical earthquake ground motion duration. Journal of Jiamusi University (Natural Science Edition), 27(4): 493—494. (in Chinese)
    孙小云, 2017. 地震动持时特性及其对RC框架结构非线性地震响应影响研究. 兰州: 兰州理工大学.

    Sun X. Y. , 2017. Investigation on duration characteristics of ground motion and its effect on nonlinear seismic response of RC frame structures. Lanzhou: Lanzhou University of Technology. (in Chinese)
    陶能付, 章在墉, 1994. 以概率为基础的地震动持时小区划. 同济大学学报, 22(2): 230—235.

    Tao N. F. , Zhang Z. Y. , 1994. Microzonation of ground motion duration based on probabilistic method. Journal of Tongji University, 22(2): 230—255. (in Chinese)
    陶能付, 章在墉, 1996. 地震动持时在抗震设计中的应用. 同济大学学报(自然科学版), 24(4): 374—379

    Tao N. F. , Zhang Z. Y. , 1996. Application of ground motion duration to seismic design. Journal of Tongji University (Natural Science), 24(4): 374—379. (in Chinese)
    田文通, 董建华, 杨博等, 2021. 云南漾濞6.4级地震强地面运动三要素基本特征分析. 地震工程学报, 43(4): 760—766

    Tian W. T. , Dong J. H. , Yang B. , et al. , 2021. Basic characteristics of the three elements of strong ground motion of the Yangbi M6.4 earthquake in Yunnan Province. China Earthquake Engineering Journal, 43(4): 760—766. (in Chinese)
    王栋, 2010. 近断层地震动的上/下盘效应研究. 哈尔滨: 中国地震局工程力学研究所.

    Wang D., 2010. The hanging wall/footwall effects of near-fault ground motions. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    王德才, 2010. 基于能量分析的地震动输入选择及能量谱研究. 合肥: 合肥工业大学.

    Wang D. C., 2010. Research on energy spectrum and the selection of earthquake accelerograms for dynamic analysis based on energy. Hefei: Hefei University of Technology. (in Chinese)
    王德才, 叶献国, 2010. 基于能量分析强震持时指标的选择. 工程抗震与加固改造, 32(6): 1—8 doi: 10.3969/j.issn.1002-8412.2010.06.001

    Wang D. C. , Ye X. G. , 2010. Index selection of strong motion duration for energy analysis. Earthquake Resistant Engineering and Retrofitting, 32(6): 1—8. (in Chinese) doi: 10.3969/j.issn.1002-8412.2010.06.001
    王放, 干洪, 杨少华, 2018. 高层框架剪力墙结构的滞回耗能分布. 安徽建筑大学学报, 26(2): 1—5 doi: 10.11921/j.issn.2095-8382.20180201

    Wang F. , Gan H. , Yang S. H. , 2018. The hysteresis energy distribution of shear wall structure of high-level frame. Journal of Anhui Jianzhu University, 26(2): 1—5. (in Chinese) doi: 10.11921/j.issn.2095-8382.20180201
    王亚勇, 李虹, 1986. 考虑场地特征的强震地面运动参数的统计分析. 地震工程与工程振动, 6(3): 67—77

    Wang Y. Y. , Li H. , 1986. Site dependent attenuation statistics of strong ground motion parameters. Earthquake Engineering and Engineering Vibration, 6(3): 67—77. (in Chinese)
    王倩, 2015. 水平地震动持时的特征研究. 哈尔滨: 中国地震局工程力学研究所.

    Wang Q., 2015. Study on characteristics of the duration of horizontal components of ground motions. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    王中阳, 车佳玲, 张尚荣等, 2018. 基于能量方法设计的RC框架结构易损性分析. 震灾防御技术, 13(3): 524—533

    Wang Z. Y. , Che J. L. , Zhang S. R. , et al. , 2018. Seismic fragility analysis of RC frame structure based on energy balance. Technology for Earthquake Disaster Prevention, 13(3): 524—533. (in Chinese)
    肖明葵, 刘纲, 白绍良等, 2002. 抗震结构的滞回耗能谱. 世界地震工程, 18(3): 110 —115.

    Xiao M. K. , Liu G. , Bai S. L. , et al. , 2002. The hysteretic energy spectra of seismic structures. World Earthquake Engineering, 18(3): 110—115. (in Chinese)
    肖明葵, 刘纲, 白绍良, 2006. 基于能量反应的地震动输入选择方法讨论. 世界地震工程, 22(3): 89—94 doi: 10.3969/j.issn.1007-6069.2006.03.015

    Xiao M. K. , Liu G. , Bai S. L. , 2006. Some methods of selecting earthquake wave based on energy responses. World Earthquake Engineering, 22(3): 89—94. (in Chinese) doi: 10.3969/j.issn.1007-6069.2006.03.015
    谢礼立, 张晓志, 1988. 地震动记录持时与工程持时. 地震工程与工程振动, 8(1): 31—38

    Xie L. L. , Zhang X. Z. , 1988. Accelerogram-based duration and engineering duration of ground motion. Earthquake Engineering and Engineering Vibration, 8(1): 31—38. (in Chinese)
    许成顺, 豆鹏飞, 高畄成等, 2019. 地震动持时压缩比对可液化地基地震反应影响的振动台试验. 岩土力学, 40(1): 147—155

    Xu C. S. , Dou P. F. , Gao L. C. , et al. , 2019. Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation. Rock and Soil Mechanics, 40(1): 147—155. (in Chinese)
    徐龙河, 杨冬玲, 李忠献, 2011. 基于应变和比能双控的钢结构损伤模型. 振动与冲击, 30(7): 218—222

    Xu L. H. , Yang D. L. , Li Z. X. , 2011. Strain and energy ratio-based damage model of a steel structure. Journal of Vibration and Shock, 30(7): 218—222. (in Chinese)
    徐培彬, 温瑞智, 2018. 基于我国强震动数据的地震动持时预测方程. 地震学报, 40(6): 809−819

    Xu P. B. , Wen R. Z. , 2018. The prediction equations for the significant duration of strong motion in Chinese mainland. Acta Seismologica Sinica, 40(6): 809−819. (in Chinese)
    杨伟, 欧进萍, 2008. 结构地震弹塑性反应谱-损伤谱. 地震工程与工程振动, 28(6): 44—53

    Yang W. , Ou J. P. , 2008. Earthquake inelastic response spectra-damage spectra. Journal of Earthquake Engineering and Engineering Vibration, 28(6): 44—53. (in Chinese)
    杨伟, 高峰, 2012. 抗震结构基于最大弹塑性位移耦合作用的滞回耗能谱. 振动工程学报, 25(6): 686—692

    Yang W. , Gao F. , 2012. Hysteretic energy spectra based on coupling effect of maximum elasto-plastic deformation for aseismic structures. Journal of Vibration Engineering, 25(6): 686—692. (in Chinese)
    叶列平, 程光煜, 曲哲等, 2012. 基于能量抗震设计方法研究及其在钢支撑框架结构中的应用. 建筑结构学报, 33(11): 36—45

    Ye L. P. , Cheng G. Y. , Qu Z. , et al. , 2012. Study on energy-based application on steel seismic design method and braced frame structures. Journal of Building Structures, 33(11): 36—45. (in Chinese)
    叶献国, 许政, 常磊, 2011. 钢筋混凝土框架结构耗能分析. 震灾防御技术, 6(4): 448—453 doi: 10.11899/zzfy20110410

    Ye X. G. , Xu Z. , Chang L. , 2011. Analysis of hysteretic energy of RC frame structures. Technology for Earthquake Disaster Prevention, 6(4): 448—453. doi: 10.11899/zzfy20110410
    张美玲, 2014. 地震动强度包络函数相关参数确定. 哈尔滨: 中国地震局工程力学研究所.

    Zhang M. L., 2014. Determination on related parameters for intensity envelope function of ground motion. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    张晓哲, 2000. 结构抗震理论中地震波时-频反应谱分析方法的初步研究. 上海: 同济大学.
    赵凤仙, 2015. 局部地形效应对地震动参数的影响研究. 北京: 北京工业大学.

    Zhao F. X., 2015. The study of local topography effection on ground motion parameters. Beijing: Beijing University of Technology. (in Chinese)
    赵艳, 郭明珠, 季杨等, 2007. 场地条件对地震动持时的影响. 震灾防御技术, 2(4): 417—424 doi: 10.3969/j.issn.1673-5722.2007.04.011

    Zhao Y. , Guo M. Z. , Ji Y. , et al. , 2007. Site conditions’ influence on earthquake ground motion duration. Technology for Earthquake Disaster Prevention, 2(4): 417—424. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.04.011
    赵艳, 付丽艳, 韩卫等, 2008. 震中矩对水平向能量持时的影响分析. 佳木斯大学学报(自然科学版), 26(5): 630—632, 635

    Zhao Y. , Fu L. Y. , Han W. , et al. , 2008. The influence of epicenter distance to horizontal earthquake ground motion duration. Journal of Jiamusi University (Natural Science Edition), 26(5): 630—632, 635. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Construction Industry Press. (in Chinese)
    钟菊芳, 袁峰, 2019. 震源参数对合成时程持时的影响分析. 防灾减灾工程学报, 39(5): 733—747

    Zhong J. F. , Yuan F. , 2019. Influence of source parameters on the duration of simulated ground motion. Journal of Disaster Prevention and Mitigation Engineering, 39(5): 733—747. (in Chinese)
    Abrahamson N. A. , 1992. Non-stationary spectral matching. Seismological Research Letters, 63(1): 30.
    Anderson J. G., 2004. Quantitative measure of the goodness-of-fit of synthetic seismograms. In: 13 th World Conference on Earthquake Engineering. Vancouver: International Association for Earthquake Engineering.
    ASCE, 2017. ASCE/SEI 7-16 Minimum design loads and associated criteria for buildings and other structures. Reston: American Society of Civil Engineers.
    Bahrampouri M. , Rodriguez-Marek A. , Green R. A. , 2021. Ground motion prediction equations for significant duration using the KiK-net database. Earthquake Spectra, 37(2): 903—920. doi: 10.1177/8755293020970971
    Baker J. W. , Cornell C. A. , 2005. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics, 34(10): 1193—1217.
    Bhanu V. , Chandramohan R. , Sullivan T. J. , 2021. Influence of ground motion duration on the dynamic deformation capacity of reinforced concrete frame structures. Earthquake Spectra, 37(4): 2622—2637. doi: 10.1177/87552930211033879
    Bojorquez E. , Ruiz S. E. , Teran-Gilmore A. , 2008. Reliability-based evaluation of steel structures using energy concepts. Engineering Structures, 30(6): 1745—1759. doi: 10.1016/j.engstruct.2007.11.014
    Bojorquez E. , Reyes-Salazar A. , Terán-Gilmore A. , et al. , 2010. Energy-based damage index for steel structures. Steel and Composite Structures, 10(4): 331—348. doi: 10.12989/scs.2010.10.4.331
    Bommer J. J. , Martínez-Pereira A. , 1999. The effective duration of earthquake strong motion. Journal of Earthquake Engineering, 3(2): 127—172.
    Bommer J. J. , Magenes G. , Hancock J. , et al. , 2004. The influence of strong-motion duration on the seismic response of masonry structures. Bulletin of Earthquake Engineering, 2(1): 1—26. doi: 10.1023/B:BEEE.0000038948.95616.bf
    Bommer J. J. , Stafford P. J. , Alarcon J. E. , 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bulletin of the Seismological Society of America, 99(6): 3217—3233. doi: 10.1785/0120080298
    Boore D. M. , Thompson E. M. , 2014. Path durations for use in the stochastic-method simulation of groundmotions. Bulletin of the Seismological Society of America, 104(5): 2541—2552. doi: 10.1785/0120140058
    Bradley B. A. , 2010. A generalized conditional intensity measure approach and holistic ground-motion selection. Earthquake Engineering & Structural Dynamics, 39(12): 1321—1342.
    Bradley B. A. , 2012. The seismic demand hazard and importance of the conditioning intensity measure. Earthquake Engineering & Structural Dynamics, 41(11): 1417—1437.
    Bruneau M. , Wilson J. C. , Tremblay R. , 1996. Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake. Canadian Journal of Civil Engineering, 23(3): 678—713. doi: 10.1139/l96-883
    CEN, 2004. EN1998-1: 2004 Eurocode 8: Design of structures for earthquake resistance-Part1: Generl rules, seismic actions and rules for buildings. Brussels: European Commitee for Standardization.
    Chandramohan R. , Baker J. W. , Deierlein G. G. , 2016. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthquake Spectra, 32(2): 927—950. doi: 10.1193/122813eqs298mr2
    Fairhurst M. , Bebamzadeh A. , Ventura C. E. , 2019. Effect of ground motion duration on reinforced concrete shear wall buildings. Earthquake Spectra, 35(1): 311—331. doi: 10.1193/101117EQS201M
    Fajfar P. , Vidic T. , Fischinger M. , 1989. Seismic demand in medium- and long-period structures. Earthquake Engineering & Structural Dynamics, 18(8): 1133—1144.
    Foschaar J. C., Baker J. W., Deierlein G. G., 2012. Preliminary assessment of ground motion duration effects on structural collapse. In: 15 th World Conference on Earthquake Engineering. Lisbon: WCEE.
    Hammad A. , Moustafa M. A. , 2020. Modeling sensitivity analysis of special concentrically braced frames under short and long duration ground motions. Soil Dynamics and Earthquake Engineering, 128: 105867. doi: 10.1016/j.soildyn.2019.105867
    Han J. P. , Sun X. Y. , Zhou Y. , 2017. Duration effect of spectrally matched ground motion records on collapse resistance capacity evaluation of RC frame structures. The Structural Design of Tall and Special Buildings, 26(18): e1397. doi: 10.1002/tal.1397
    Hancock J. , Watson-Lamprey J. , Abrahamson N. A. , et al. , 2006. An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of Earthquake Engineering, 10(S1): 67—89.
    Hancock J. , Bommer J. J. , 2007. Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response. Soil Dynamics and Earthquake Engineering, 27(4): 291—299. doi: 10.1016/j.soildyn.2006.09.004
    Hwang S. H. , Mangalathu S. , Jeon J. S. , 2021. Quantifying the effects of long-duration earthquake ground motions on the financial losses of steel moment resisting frame buildings of varying design risk category. Earthquake Engineering & Structural Dynamics, 50(5): 1451—1468.
    Ibarra L. F. , Medina R. A. , Krawinkler H. , 2005. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12): 1489—1511.
    Iervolino I. , Manfredi G. , Cosenza E. , 2006. Ground motion duration effects on nonlinear seismic response. Earthquake Engineering & Structural Dynamics, 35(1): 21—38.
    Jaimes M. A. , García-Soto A. D. , 2021. Ground-motion duration prediction model from recorded Mexican interplate and intermediate-depth intraslab earthquakes. Bulletin of the Seismological Society of America, 111(1): 258—273. doi: 10.1785/0120200196
    Jayaram N. , Lin T. , Baker J. W. , 2011. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra, 27(3): 797—815. doi: 10.1193/1.3608002
    Ji K. , Wen R. Z. , Zong C. C. , et al. , 2021. Genetic algorithm-based ground motion selection method matching target distribution of generalized conditional intensity measures. Earthquake Engineering & Structural Dynamics, 50(6): 1497—1516.
    Kawashima K. , Aizawa K. , 1989. Bracketed and normalized durations of earthquake ground acceleration. Earthquake Engineering & Structural Dynamics, 18(7): 1041—1051.
    Kempton J. J. , Stewart J. P. , 2006. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthquake Spectra, 22(4): 985—1013. doi: 10.1193/1.2358175
    Kitayama S. , Constantinou M. C. , 2021. Implications of strong earthquake ground motion duration on the response and testing of seismic isolation systems. Earthquake Engineering & Structural Dynamics, 50(2): 290—308.
    Kwong N. S. , Chopra A. K. , 2017. A generalized conditional mean spectrum and its application for intensity-based assessments of seismic demands. Earthquake Spectra, 33(1): 123—143. doi: 10.1193/040416eqs050m
    Lee V. W. , Trifunac M. D. , 1985. Torsional accelerograms. International Journal of Soil Dynamics and Earthquake Engineering, 4(3): 132—139. doi: 10.1016/0261-7277(85)90007-5
    Lee V. W. , 2002. Empirical scaling of strong earthquake ground motion-part II: Duration of strong motion. ISET Journal of Earthquake Technology, 39(4): 255—271.
    Liddell D., Ingham J. M., Davidson B. J., 2000. Influence of loading history on ultimate displacement of concrete structures. New Zealand: Department of Civil and Resource Engineering, University of Auckland.
    Malhotra P. K. , Eeri M, 2003. Strong-motion records for site-specific analysis. Earthquake Spectra, 19(3): 557—578. doi: 10.1193/1.1598439
    Mohammed M. S., Sanders D., Buckle I., 2015. Shake table tests of reinforced concrete bridge columns under long duration ground motions. In: 6 th International Conference on Advances in Experimental Structural Engineering. Urbana-Champaign, USA: University of Illinois.
    Molazadeh M. , Saffari H. , 2018. The effects of ground motion duration and pinching-degrading behavior on seismic response of SDOF systems. Soil Dynamics and Earthquake Engineering, 114: 333—347. doi: 10.1016/j.soildyn.2018.06.032
    NZ-NZS, 2004. NZS 1170.5: 2004 Structural design actions-part 5: earthquake actions - New Zealand. Wellington: Standards New Zealand.
    Ou Y. C. , Song J. W. , Wang P. H. , et al. , 2014. Ground motion duration effects on hysteretic behavior of reinforced concrete bridge columns. Journal of Structural Engineering, 140(3): 04013065. doi: 10.1061/(ASCE)ST.1943-541X.0000856
    Pan Y. X. , Ventura C. E. , Finn W. D. L. , 2018. Effects of ground motion duration on the seismic performance and collapse rate of light-frame wood houses. Journal of Structural Engineering, 144(8): 04018112. doi: 10.1061/(ASCE)ST.1943-541X.0002104
    Papazachos B. C., Papaooannou C. A., Margaris V. N., et al., 1992. Seismic hazard assessment in Greece based on strong motion duration. In: Earthquake Engineering, Tenth World Conference. Rotterdam, 425—430.
    Park Y. J. , Ang A. H. S. , Wen Y. K. , 1985. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 111(4): 740—757. doi: 10.1061/(ASCE)0733-9445(1985)111:4(740)
    Raghunandan M. , Liel A. B. , 2013. Effect of ground motion duration on earthquake-induced structural collapse. Structural Safety, 41: 119—133. doi: 10.1016/j.strusafe.2012.12.002
    Ruiz-Garcia J. , 2010. On the influence of strong-ground motion duration on residual displacement demands. Earthquakes and Structures, 1(4): 327—344. doi: 10.12989/eas.2010.1.4.327
    Samanta A., Megawati K., Pan T. C., 2012. Duration-dependent inelastic response spectra and effect of ground motion duration. In: The 15 th World Conference on Earthquake Engineering. Lisbon: WCEE.
    Shi Y. , Stafford P. J. , 2018. Markov chain Monte Carlo ground-motion selection algorithms for conditional intensity measure targets. Earthquake Engineering & Structural Dynamics, 47(12): 2468—2489.
    Somerville P. G. , Smith N. F. , Graves R. W. , et al. , 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1): 199—222. doi: 10.1785/gssrl.68.1.199
    Tarbali K. , Bradley B. A. , 2015. Ground motion selection for scenario ruptures using the generalised conditiona intensity measure (GCIM) method. Earthquake Engineering & Structural Dynamics, 44(10): 1601—1621.
    Tarbali K. , Bradley B. A. , 2016. The effect of causal parameter bounds in PSHA-based ground motion selection. Earthquake Engineering & Structural Dynamics, 45(9): 1515—1535.
    Trifunac M. D. , Brady A. G. , 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3): 581—626.
    Uang C. M. , Bertero V. V. , 1990. Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1): 77—90.
    Wang G. , 2011. A ground motion selection and modification method capturing response spectrum characteristics and variability of scenario earthquakes. Soil Dynamics and Earthquake Engineering, 31(4): 611—625. doi: 10.1016/j.soildyn.2010.11.007
    Wong H. L., 1978. Synthesizing realistic ground motion accelerograms. Los Angeles: University of Southern California, Department of Civil Engineering.
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  188
  • PDF下载量:  48
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-08-04
  • 刊出日期:  2023-03-31

目录

/

返回文章
返回