• ISSN 1673-5722
  • CN 11-5429/P

大跨度悬索桥地震响应控制分析

张世蒙 王亚欣 王贵春

张世蒙,王亚欣,王贵春,2023. 大跨度悬索桥地震响应控制分析. 震灾防御技术,18(1):136−146. doi:10.11899/zzfy20230115. doi: 10.11899/zzfy20230115
引用本文: 张世蒙,王亚欣,王贵春,2023. 大跨度悬索桥地震响应控制分析. 震灾防御技术,18(1):136−146. doi:10.11899/zzfy20230115. doi: 10.11899/zzfy20230115
Zhang Shimeng, Wang Yaxin, Wang Guichun. The Analysis on Seismic Response Control of Long-span Suspension Bridge[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 136-146. doi: 10.11899/zzfy20230115
Citation: Zhang Shimeng, Wang Yaxin, Wang Guichun. The Analysis on Seismic Response Control of Long-span Suspension Bridge[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 136-146. doi: 10.11899/zzfy20230115

大跨度悬索桥地震响应控制分析

doi: 10.11899/zzfy20230115
基金项目: 国家自然科学基金青年基金(51408554)
详细信息
    作者简介:

    张世蒙,女,生于1995年。助理工程师。主要从事结构抗震方面的研究。E-mail:18703853389@163.com

    通讯作者:

    王亚欣,女,生于1994年,助理工程师,主要从事公路养护方面的研究。E-mail:875774769@qq.com

The Analysis on Seismic Response Control of Long-span Suspension Bridge

  • 摘要: 以主跨为1 490 m的润扬长江大桥为背景,采用ANSYS软件建立结构有限元模型,计算大跨度悬索桥动力特性。对黏滞阻尼器和软钢阻尼器进行参数敏感性分析,得出控制大跨度悬索桥地震响应的最优参数值,并分析一致激励和行波激励作用下黏滞阻尼器和软钢阻尼器减震效果。研究结果表明,黏滞阻尼器和软钢阻尼器对塔梁相对位移有较好的控制效果,但会使塔底内力有所增加;就位移控制而言,软钢阻尼器的效果更好;在低视波速区间内,黏滞阻尼器和软钢阻尼器减震效果明显存在波动特征;随着视波速的逐渐增大,黏滞阻尼器和软钢阻尼器减震效果受视波速的影响逐渐减小,悬索桥地震响应逐渐平缓,并趋于一致激励作用下的对应值。
  • 图  1  桥型总体布置(单位:米)

    Figure  1.  General layout plan of bridge type (Unit: m)

    图  2  悬索桥有限元模型

    Figure  2.  Finite element model of suspension bridge

    图  3  Combin14单元

    Figure  3.  Combin14 unit

    图  4  Combin40单元

    Figure  4.  Combin40 unit

    图  5  悬索桥地震响应峰值随阻尼系数的变化曲线

    Figure  5.  Variation of peak values of seismic responses of suspension bridge with damping coefficient

    图  6  不同弹性刚度下悬索桥地震响应峰值变化曲线

    Figure  6.  Variation curve of peak values of seismic responses of suspension bridge with different elastic stiffness

    图  7  悬索桥各关键点地震响应时程曲线

    Figure  7.  Time history curves of seismic responses at key points of suspension bridge

    图  8  悬索桥各关键点地震响应时程曲线

    Figure  8.  Time history curves of seismic responses at key points of suspension bridge

    图  9  不同阻尼系数下悬索桥结构响应峰值随视波速的变化曲线

    Figure  9.  Variation curves of peak values of responses of suspension bridge structure with apparent velocity under different damping coefficients

    图  10  悬索桥结构响应峰值随视波速的变化规律

    Figure  10.  Variation of peak values of responses of suspension bridge structure with apparent velocity

    表  1  悬索桥动力特性分析

    Table  1.   Dynamic characteristic analysis of suspension bridge

    阶次频率/Hz振型描述阶次频率/Hz振型描述
    10.049 857一阶对称侧弯110.210 620一阶反对称扭转
    20.090 090一阶反对称竖弯120.214 330主缆振动
    30.130 630一阶对称竖弯130.247 290主缆振动
    40.131 430一阶反对称侧弯140.262 390二阶对称侧弯
    50.181 000主缆振动150.264 240三阶对称竖弯
    60.182 400二阶对称竖弯160.291 330主缆振动
    70.184 910主缆振动170.316 890主缆振动+扭转
    80.186 160主缆振动+主梁扭转180.326 400三阶反对称竖弯
    90.187 020一阶对称扭转190.328 770主缆振动
    100.200 630二阶反对称竖弯200.330 460主缆振动
    下载: 导出CSV

    表  2  TCU102波输入下软钢阻尼器响应峰值

    Table  2.   Peak values of responses of mild steel damper under TCU102 wave input

    屈服荷载/kN南塔阻尼器位移/m北塔阻尼器位移/m南塔阻尼器阻尼力/kN北塔阻尼器阻尼力/kN
    9000.817 20.806 911 80011 800
    2 0000.694 20.692 13 5873 663
    4 0000.553 10.596 44 9674 833
    6 0000.456 30.449 16 2396 091
    9 0000.246 10.240 89 4969 113
    20 0000.089 70.076 18 8728 650
    40 0000.016 80.014 18 0858 239
    50 0000.005 40.004 97 7587 963
    下载: 导出CSV

    表  3  悬索桥结构关键部位地震响应与减震效果对比

    Table  3.   Comparison of seismic responses and shock absorbing effect on key positions of suspension bridge structure

    减震装置塔梁相对位移/m减震率η/%塔顶位移/m减震率η/%塔底弯矩/(kN·m)减震率η/%塔底剪力/kN减震率η/%
    无减震装置0.874 90.664 84 564.11×10372.48×103
    黏滞阻尼器0.421 651.80.430 835.24 411.13×1033.472.55×103−0.1
    软钢阻尼器0.194 677.80.426 535.85 778.02×103−26.692.75×103−27.9
    下载: 导出CSV

    表  4  行波效应下悬索桥结构关键部位位移响应与减震效果对比

    Table  4.   Comparison of displacement response shock absorbing effect on key positions of suspension bridge structure under traveling wave effect

    视波速/(m·s−1塔梁相对位移减震率η/%塔顶位移减震率η/%
    黏滞阻尼器软钢阻尼器黏滞阻尼器软钢阻尼器
    1004.3221.571.691.06
    2006.4919.412.872.67
    5009.6241.730.46−42.45
    1 00020.4622.885.4114.09
    1 5002.1915.771.599.47
    2 0008.4822.314.4511.22
    4 00015.7569.6610.1813.49
    6 00020.3675.8811.6118.36
    8 00023.3176.1612.2420.53
    下载: 导出CSV

    表  5  行波效应下悬索桥结构关键部位内力响应减震效果对比

    Table  5.   Comparison of internal force response shock absorbing effect on key positions of suspension bridge structures

    视波速/(m·s−1塔底弯矩减震率η/%塔底剪力减震率η/%
    黏滞阻尼器软钢阻尼器黏滞阻尼器软钢阻尼器
    100−3.28−2.98−8.17−41.79
    20016.6615.9217.733.08
    50013.65−41.9211.54−43.90
    1 0008.2312.9811.41−6.41
    1 5000.7919.930.432.16
    2 0000.8921.081.073.75
    4 0007.36−1.521.40−26.46
    6 00016.95−6.8811.31−20.13
    8 00019.28−12.279.16−17.46
    下载: 导出CSV
  • 姜涛, 张哲, 邱文亮, 2014. 一座自锚式悬索桥的减振设计. 武汉理工大学学报(交通科学与工程版), 38(2): 371—374 doi: 10.3963/j.issn.2095-3844.2014.02.030

    Jiang T. , Zhang Z. , Qiu W. L. , 2014. Application of viscous damper on self-anchored suspension bridge. Journal of Wuhan University of Technology (Transportation Science & Engineering), 38(2): 371—374. (in Chinese) doi: 10.3963/j.issn.2095-3844.2014.02.030
    李钢, 李宏男, 2006. 新型软钢阻尼器的减震性能研究. 振动与冲击, 25(3): 66—72 doi: 10.3969/j.issn.1000-3835.2006.03.015

    Li G. , Li H. N. , 2006. Study on vibration reduction of structure with a new type of mild metallic dampers. Journal of Vibration and Shock, 25(3): 66—72. (in Chinese) doi: 10.3969/j.issn.1000-3835.2006.03.015
    李丽, 赵国峰, 李吉等, 2020. 一致激励与多点激励对悬索桥地震响应影响分析. 震灾防御技术, 15(2): 252—259 doi: 10.11899/zzfy20200203

    Li L. , Zhao G. F. , Li J. , et al. , 2020. Analysis of the influence of uniform excitation and multi-point excitation on the seismic response of suspension bridge. Technology for Earthquake Disaster Prevention, 15(2): 252—259. (in Chinese) doi: 10.11899/zzfy20200203
    卢长炯, 卢明奇, 2021. 基于黏滞阻尼器的单跨悬索桥地震位移响应控制. 贵州大学学报(自然科学版), 38(2): 98—103

    Lu C. J. , Lu M. Q. , 2021. Seismic displacement responses control of single span suspension bridges based on viscous dampers. Journal of Guizhou University (Natural Science), 38(2): 98—103. (in Chinese)
    沈禹, 谈华顺, 王献挚等, 2020. 考虑行波效应的大跨度矮塔斜拉桥耐震时程分析. 工程力学, 37(3): 131—141, 148

    Shen Y. , Tan H. S. , Wang X. Z. , et al. , 2020. Application of the endurance time method to seismic-induced pounding analysis for long-span extradosed cable-stayed bridges considering wave passage effects. Engineering Mechanics, 37(3): 131—141, 148. (in Chinese)
    王浩, 李爱群, 2014. ANSYS大跨度桥梁高等有限元分析与工程实例. 北京: 中国建筑工业出版社.
    王新敏, 李义强, 许宏伟, 2011. ANSYS结构分析单元与应用. 北京: 人民交通出版社.
    王亚欣, 李武生, 王贵春等, 2021. 江津观音岩长江大桥减震分析. 结构工程师, 37(1): 90—96

    Wang Y. X. , Li W. S. , Wang G. C. , et al. , 2021. Shock absorption analysis of Jiangjin Guanyinyan Yangtze river bridge. Structural Engineers, 37(1): 90—96. (in Chinese)
    闫聚考, 李建中, 彭天波等, 2017. 不同纵向约束体系多塔悬索桥行波效应研究. 哈尔滨工程大学学报, 38(6): 874—880

    Yan J. K. , Li J. Z. , Peng T. B. , et al. , 2017. Effect of wave passage on seismic response of multi-tower suspension bridge under different longitudinal constraint systems. Journal of Harbin Engineering University, 38(6): 874—880. (in Chinese)
    严琨, 王立新, 姜慧, 2017. 伸缩缝刚度对大跨度悬索桥动力特性的影响. 震灾防御技术, 12(3): 667—676

    Yan K. , Wang L. X. , Jiang H. , 2017. Dynamic characteristics of long-span suspension bridge with variability of stiffness of expansion joints. Technology for Earthquake Disaster Prevention, 12(3): 667—676. (in Chinese)
    易富, 杜常博, 王伟等, 2019. 基于人工地震波作用下大跨度悬索桥多点激励地震响应分析. 地震工程学报, 41(2): 278—285 doi: 10.3969/j.issn.1000-0844.2019.02.278

    Yi F. , Du C. B. , Wang W. , et al. , 2019. Seismic response of long-span suspension bridges under multi-support excitation based on artificial seismic waves. China Earthquake Engineering Journal, 41(2): 278—285. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.02.278
    张玉平, 王浩, 邹仲钦, 2018. 大跨度三塔悬索桥弹塑性软钢阻尼器减震控制. 振动与冲击, 37(23): 226—233

    Zhang Y. P. , Wang H. , Zou Z. Q. , 2018. Aseismic control of a long-span triple-tower suspension bridge with elastic-plastic steel dampers. Journal of Vibration and Shock, 37(23): 226—233. (in Chinese)
    中华人民共和国交通运输部, 2008. JTG/T B02—01—2008 公路桥梁抗震设计细则. 北京: 人民交通出版社.

    Ministry of Transport of the People's Republic of China, 2008. JTG/T B02—01—2008 Guidelines for seismic design of highway bridges. Beijing: China Communications Press. (in Chinese)
    Apaydın N. M. , 2010. Earthquake performance assessment and retrofit investigations of two suspension bridges in Istanbul. Soil Dynamics and Earthquake Engineering, 30(8): 702—710. doi: 10.1016/j.soildyn.2010.02.011
    Kandemir E. C. , Mazda T. , Nurui H. , et al. , 2011. Seismic retrofit of an existing steel arch bridge using viscous damper. Procedia Engineering, 14: 2301—2306. doi: 10.1016/j.proeng.2011.07.290
    Ras A. , Boumechra N. , 2016. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design. Alexandria Engineering Journal, 55(3): 2821—2832. doi: 10.1016/j.aej.2016.07.012
    Semenov M. E. , Solovyov A. M. , Meleshenko P. A. , et al. , 2020. Efficiency of hysteretic damper in oscillating systems. Mathematical Modelling of Natural Phenomena, 15: 43. doi: 10.1051/mmnp/2019053
    Wang H. , Zhou R. , Zong Z. H. , et al. , 2012. Study on seismic response control of a single-tower self-anchored suspension bridge with elastic-plastic steel damper. Science China Technological Sciences, 55(6): 1496—1502. doi: 10.1007/s11431-012-4826-5
    Yao J. T. P. , 1972. Concept of structural control. Journal of the Structural Division, 98(7): 1567—1574. doi: 10.1061/JSDEAG.0003280
    Zheng Y. , Xiao X. , Zhi L. H. , et al. , 2015. Evaluation on impact interaction between abutment and steel girder subjected to nonuniform seismic excitation. Shock and Vibration, 2015: 981804.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  70
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回