Dynamic Deflection Simulation of Bridge in Driving Process Based on ABAQUS Software
-
摘要: 为研究桥梁结构在行车过程中动挠度的变化,同时考虑传统动荷载试验方法耗费人力、不利于桥梁快速检测与桥梁健康评估的局限性,提出基于ABAQUS软件模拟行车过程中桥梁动挠度的方法。首先将车辆荷载等效为振动移动荷载;然后根据车辆实际轴距、轮距和轮胎尺寸,在桥梁模型上划分行车带,通过Dload子程序,将荷载作用在行车带上;最后根据车速设置分析步和增量步时长,控制荷载在不同时间作用在行车带各区域模拟车辆运动。将该方法应用于实际连续箱梁桥动荷载试验中,对比分析各工况下的实测结果与模拟结果。实测结果与模拟结果基本一致,表明基于ABAQUS软件模拟行车过程中桥梁动挠度的方法可实现桥梁动挠度的快速检测评估,为通过动荷载试验数据评估桥梁安全提供简便方法。Abstract: In order to study the change of dynamic deflection of bridge structure in the process of driving, and to consider the limitations of traditional dynamic load test method, which is labor-consuming and not conducive to rapid bridge detection and bridge health assessment, a method based on ABAQUS software is proposed to simulate the dynamic deflection of bridges during the driving process. Firstly, the vehicle load is equivalent to vibration moving load. Then according to the actual wheelbase, wheelbase and tire size of the vehicle, the bridge model is divided into driving belt, through the Dload subroutine, the load on the driving belt; Finally, according to the speed setting of the analysis step and incremental step time, loads acting on various areas of the travel zone at different times are controlled to simulate vehicle motion. The method is applied to the dynamic load test of continuous box girder bridge to compare and analyze the measured results with the simulated results under various working conditions. The measured results are generally consistent with the simulated results, which demonstrates that the method based on ABAQUS software to simulate the dynamic deflection of bridges during driving can achieve rapid detection and evaluation of dynamic deflection of bridge, and provides a simple method for assessing the bridge safety through dynamic load test data.
-
Key words:
- Bridge /
- Dynamic deflection /
- ABAQUS /
- Vehicle load /
- Sports car test
-
表 1 各跨跨中动挠度校验系数
Table 1. Check coefficients of peak values in the main span
工况 实测值 计算值 时间误差/s 校验系数 时间/t 最大动挠
度/mm时间/t 最大动挠
度/mm20 km/h车速 峰值1 3.13 0.74 2.31 0.86 0.82 0.86 峰值2 8.50 −1.90 7.93 −2.04 0.93 0.93 峰值3 13.80 0.58 12.42 0.62 1.38 0.94 30 km/h车速 峰值1 1.58 0.82 1.60 0.96 0.02 0.86 峰值2 5.65 −1.84 5.30 −2.11 0.35 0.87 峰值3 9.19 0.54 9.26 0.66 0.07 0.81 40 km/h车速 峰值1 1.63 0.96 1.56 0.95 0.07 0.99 峰值2 4.29 −2.23 4.21 −2.29 0.08 0.97 峰值3 6.87 0.68 6.91 0.82 0.04 0.83 -
胡顺仁, 2014. 提高光电成像挠度系统的识别精度. 光电工程, 41(2): 1—5Hu S. R. , 2014. Improving recognition accuracy of optoelectronic imaging deflection system. Opto-Electronic Engineering, 41(2): 1—5. (in Chinese) 兰日清, 丰彪, 匙庆磊, 2020. 倾角仪法测量高铁桥梁动挠度研究. 世界地震工程, 36(1): 56—62Lan R. Q. , Feng B. , Chi Q. L. , 2020. Study on dynamic deflection of high-speed railway bridge using inclinometer method. World Earthquake Engineering, 36(1): 56—62. (in Chinese) 李锦华, 张焕涛, 刘全民, 2020. 单个移动荷载激励下桥梁最大位移响应的频域分析. 交通运输工程学报, 20(1): 74—81 doi: 10.19818/j.cnki.1671-1637.2020.01.005Li J. H. , Zhang H. T. , Liu Q. M. , 2020. Frequency domain analysis for maximum displacement response of bridges excited by single moving load. Journal of Traffic and Transportation Engineering, 20(1): 74—81. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.005 李旭民, 2010. 三次样条插值函数在桥梁挠度测量中的应用研究. 城市道桥与防洪, (10): 167—170 doi: 10.3969/j.issn.1009-7716.2010.10.044Li X. M. , 2010. Application of cubic spline interpolation in bridge deflection measurement. Urban Roads Bridges & Flood Control, (10): 167—170. (in Chinese) doi: 10.3969/j.issn.1009-7716.2010.10.044 李忠献, 陈锋, 2006. 简支梁桥与多跨连续梁桥上移动荷载的识别与参数分析. 工程力学, 23(12): 91—99 doi: 10.3969/j.issn.1000-4750.2006.12.017Li Z. X. , Chen F. , 2006. Identification and parametric analysis of moving loads on simply supported and multi-span continuous bridges. Engineering Mechanics, 23(12): 91—99. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.12.017 卢永飞, 秦亮, 2020. T形刚构桥桥墩参数对车-桥动力响应影响研究. 震灾防御技术, 15(4): 718—730 doi: 10.11899/zzfy20200406Lu Y. F. , Qin L. , 2020. Study on influence of pier parameters of T-shaped rigid frame bridge on vehicle bridge dynamic response. Technology for Earthquake Disaster Prevention, 15(4): 718—730. (in Chinese) doi: 10.11899/zzfy20200406 梅泽洪, 李小军, 王玉石等, 2017. 考虑场地效应的非一致激励下桥梁地震响应特点分析. 震灾防御技术, 12(3): 646—654 doi: 10.11899/zzfy20170320Mei Z. H. , Li X. J. , Wang Y. S. , et al. , 2017. Characteristics of earthquake performances of bridge under multi-support excitation with consideration of site effects. Technology for Earthquake Disaster Prevention, 12(3): 646—654. (in Chinese) doi: 10.11899/zzfy20170320 彭安平, 李亮, 2019. 振动荷载与移动荷载作用下桥梁动力响应对比试验与数值分析. 铁道科学与工程学报, 16(9): 2256—2264 doi: 10.19713/j.cnki.43-1423/u.2019.09.017Peng A. P. , Li L. , 2019. Comparative test and numerical simulation of dynamic response of bridge under vibration load and vehicle load. Journal of Railway Science and Engineering, 16(9): 2256—2264. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2019.09.017 谭国金, 刘寒冰, 程永春等, 2011. 基于车-桥耦合振动的简支梁桥冲击效应. 吉林大学学报(工学版), 41(1): 62—67Tan G. J. , Liu H. B. , Cheng Y. C. , et al. , 2011. Analysis of impact of vehicle to simply supported beam bridge based on vehicle-bridge coupled vibration. Journal of Jilin University (Engineering and Technology Edition), 41(1): 62—67. (in Chinese) 王辉, 2021. 地基微波干涉测量桥梁监测信号ESMD-BSS降噪方法研究. 北京: 北京建筑大学.Wang H., 2021. Research on ESMD-BSS de-noising method of ground-based microwave interferometry for bridge monitoring signal. Beijing: Beijing University of Civil Engineering and Architecture. (in Chinese) 王巍, 2016. 基于多模干涉技术的光纤声发射技术用于桥梁挠度监测的研究. 南京: 东南大学.Wang W., 2016. A novel multimode interference based optical fiber ultrasonic sensing technique for bridge deflection monitoring. Nanjing: Southeast University. (in Chinese) 杨学山, 侯兴民, 廖振鹏等, 2002. 桥梁挠度测量的一种新方法. 土木工程学报, 35(2): 92—96 doi: 10.3321/j.issn:1000-131X.2002.02.016Yang X. S. , Hou X. M. , Liao Z. P. , et al. , 2002. A new method for bridge deflection measurement. China Civil Engineering Journal, 35(2): 92—96. (in Chinese) doi: 10.3321/j.issn:1000-131X.2002.02.016 张丽芳, 艾军, 陈建兵等, 2013. 桥梁动荷载试验及其有限元简化模拟研究. 武汉理工大学学报(交通科学与工程版), 37(2): 250—253 doi: 10.3963/j.issn.2095-3844.2013.02.007Zhang L. F. , Ai J. , Chen J. B. , et al. , 2013. Research on bridge dynamic load test and its finite simplified simulation. Journal of Wuhan University of Technology (Transportation Science & Engineering), 37(2): 250—253. (in Chinese) doi: 10.3963/j.issn.2095-3844.2013.02.007 张亚宾, 陈超, 刘颖姣, 2011. 移动荷载作用下桥梁动态响应的数值模拟. 河北理工大学学报(自然科学版), 33(2): 170—174Zhang Y. B. , Chen C. , Liu Y. J. , 2011. The dynamic response of bridge in the role of moving load. Journal of Hebei Institute of Technology (Natural Science Edition), 33(2): 170—174. (in Chinese) 中华人民共和国交通运输部, 2015. JTG/T J21—01—2015 公路桥梁荷载试验规程. 北京: 人民交通出版社, 36—39.Ministry of Transport of the People's Republic of China, 2015. JTG/T J21—01—2015 Load Test Methods for Highway Bridge. Beijing: China Communications Press, 36—39.(in Chinese) 中华人民共和国住房和城乡建设部, 2011. CJJ 11—2011 城市桥梁设计规范. 北京: 中国建筑工业出版社, 80—84.Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2011 CJJ 11—2011 Code for Design of The Municipal Bridge. Beijing: Chinese Construction Industry Publishing house, 80—84.(in Chinese) 周勇政, 2018. 高速铁路共振问题相关标准研究. 铁道标准设计, 62(9): 182—186 doi: 10.13238/j.issn.1004-2954.201710110007Zhou Y. Z. , 2018. Study on specifications of high speed railway resonance. Railway Standard Design, 62(9): 182—186. (in Chinese) doi: 10.13238/j.issn.1004-2954.201710110007 Kumar C. P. S. , Sujatha C. , Shankar K. , 2015. Vibration of simply supported beams under a single moving load: a detailed study of cancellation phenomenon. International Journal of Mechanical Sciences, 99: 40—47. doi: 10.1016/j.ijmecsci.2015.05.001 Liu Y. , Deng Y. , Cai C. S. , 2015. Deflection monitoring and assessment for a suspension bridge using a connected pipe system: a case study in China. Structural Control and Health Monitoring, 22(12): 1408—1425. doi: 10.1002/stc.1751 Nguyen S. T. , La H. M. , 2021. A climbing robot for steel bridge inspection. Journal of Intelligent & Robotic Systems, 102(4): 75. Sousa P. J. , Barros F. , Lobo P. , et al. , 2019. Experimental measurement of bridge deflection using Digital Image Correlation. Procedia Structural Integrity, 17: 806—811. doi: 10.1016/j.prostr.2019.08.107 Zhang K. , Luo Y. F. , 2018. Interlaminar performance of waterproof and cohesive materials for concrete bridge deck under specific test conditions. Journal of Materials in Civil Engineering, 30(8): 04018161. doi: 10.1061/(ASCE)MT.1943-5533.0002357