The Characteristics of Faults in the Chaoshan Basin, Guangdong Province and Their Late Quaternary Activity
-
摘要: 潮汕盆地主要受控于北东向和北西向2组断裂构造,盆地及周缘曾发生过多次破坏性地震。因此,厘定相关断裂的构造特征和第四纪活动性,对合理评估区域地震危险性至关重要。在系统总结和分析已有第四系钻孔年代学的基础上,采用野外地质调查与地球物理勘探相结合的方法,对潮汕盆地及周缘断裂构造开展详细的研究工作。盆地周缘基岩区断裂构造野外解析表明,北西向断裂具有正断层性质,兼具左行走滑特征,北东向断裂以逆冲变形为主。结合盆地第四系覆盖区浅层人工地震探测和已有地层年代学分析结果,进一步厘定了榕江断裂、韩江断裂、饶平-汕头断裂和普宁-潮州断裂在潮汕盆地内的几何学展布和晚更新世以来的活动特征。Abstract: The Chaoshan basin is mainly controlled by NE and NW trending faults, and many destructive earthquakes occurred in the basin and its surrounding areas. Therefore, determining the structural characteristics and Quaternary activity of these faults are very important to evaluate the regional seismic risk. In this paper, we conducted an integrated investigation involving detailed field observation, geophysical study, and synthesis of existing borehole geochronology data across the Chaoshan basin. The NW-trending faults are characterized by normal fault with left lateral movement, and the NE-trending faults are mainly trusting deformation. Combined with the shallow artificial seismic exploration, we further revealed the geometric distribution of the Rongjiang, Hanjian, Raoping-Shantou, and Puning-Chaouzhou faults in the Chaoshan basin, and discussed their late Quaternary activity.
-
Key words:
- Chaoshan Basin /
- Fault structures /
- Geometric distribution /
- Late Quaternary activity
1) 2 广东省地质矿产局,1993.中华人民共和国地质图说明书1∶50000汕头幅、澄海幅、南澳岛幅、潮阳幅、东湖幅.2) 3 广东省地质矿产局,1993.中华人民共和国地质图说明书1∶50000汕头幅、澄海幅、南澳岛幅、潮阳幅、东湖幅.3) 4 中国地震局地球物理研究所,2006. 广东省粤东地区核电项目乌屿厂址关键性地震地质问题评价报告. -
引言
韧性城乡的关键问题是韧性,与之对应的英文是“Resilience”(汪辉等,2017),最早起源于拉丁语“resilio”,意为“撤回或者取消”,后演化为英语中的“resile”,并沿用至今(Alexander,2013)。随着时代的发展,韧性一词也被广泛应用于各类学科中。社会生态学家将这一概念应用到城市研究中,认为韧性城市必须具备多样性、变化适应性、模块性、创新性、迅捷的反馈能力、社会资本的储备以及生态系统的服务能力(Allan等,2011;邵亦文等,2015;徐江等,2015)。21世纪初,美、日科学家在地震工程学科中引入韧性概念,其主要含义是指城乡遭遇中强地震时基本无破坏;遭遇强烈地震时,破坏很小,在短时间内城乡交通、通讯、供电、供水、房屋居住等基本功能可以恢复,基本没有人员伤亡(Godschalk,2003;Klein等,2003)。要实现韧性城乡的目标,核心是使城乡房屋建筑以及为交通、通讯、供电等系统服务的生命线工程具有很强的抗震能力,通俗地讲,这一目标可概括为“七级不坏,八级不倒”。
全球2个主要地震带(环太平洋地震带和欧亚大陆地震带)共同影响中国,造成中国地震多发且分散,地震伤亡人数占全球的比例超过40%。通过工程措施抗御地震造成的破坏,从而减轻或避免地震造成人员伤亡,与此相关的工作统称为震害防御,这是实现韧性城乡的必由之路。
韧性城乡建设工作的核心内容可以概括为“地下清楚”和“地上结实”,此外还有诸如科普宣传、地震烈度区划图编制、政策法规的制定和贯彻等。其中,“地下清楚”的内容包括深入地壳内部的活断层探测、城市范围的地震小区划、工程建设场地地震安全性评价和工程场地地质灾害评价等。“地上结实”的含义指采用不同建筑材料和不同结构形式的房屋、桥梁、大坝等工程结构在遭遇强烈地震作用时不倒塌,从而避免人员伤亡。
1. 中国地震灾害特点
中国幅员辽阔,地震多发且分散,历史上经济欠发达,多数房屋结构缺少基本的抗震能力,因而中国震害呈现小震成灾、大震巨灾的特点。通过对1900年以来的破坏性地震及其灾害数据进行汇总统计,将世界上各主要多震国家的震害进行比较,结果如图 1所示。其中,每个国家的震亡比是以百年来造成人员死亡的各次地震的震级总和做分母,以所造成的人员死亡数量总和做分子,计算出的1个无量纲数。震亡比大表明该国家震害严重。从图 1可以看出,比中国震害更严重的国家有海地、巴基斯坦、亚美尼亚、印度尼西亚和伊朗等,中国和印度相当,但尚不如土耳其、墨西哥,也不如美国、日本和新西兰。
图 1还列出了各国的人均GDP,显然GDP越高,抗震能力越强,震害越轻。但可以看出,与人均GDP相比,中国的震亡比偏高,说明中国用于抗震的经费投入比例与先进国家相比低得多。
2. 中国震害原因分析
地震灾害的主要表现是人员伤亡,而造成人员伤亡的直接原因是房屋倒塌(郭迅,2009;2010)。导致房屋倒塌的主要因素有2个方面,其一是客观意义明显的“地质灾害”,比如地震产生的滑坡、崩塌、滚石、砂土液化、断层位错、地表破裂以及范围甚广的强地面运动;其二是主观意义明显的“人为失当”,包括设防水准过低、结构体系选择和结构布置失当、设计规范失误以及建筑选址不当等。诸如滑坡、断层等灾害只能通过合理的选址来避免,减轻地震灾害最主要的手段是减少“人为失当”。上述“人为失当”在建筑结构上的表现可概括为4个方面,即“散”、“脆”、“偏”、“单”。
(1)“散”主要体现在:①纵横墙间连接薄弱,构造柱缺失或不足,圈梁缺失、不足或不封闭;②竖向构件(墙、柱)与水平构件(梁、楼板、檩条等)连接薄弱,构造柱缺失或不足,圈梁缺失、不足或不封闭(图 2);③门窗洞口两侧无构造柱(图 3);④砌体砌筑质量差,砂浆强度不足;⑤横墙间距过大;⑥砌筑纵或横墙长度超过3m而无构造柱;⑦有未经专门抗震设计的圆弧状填充墙(图 4)。
(2)“脆”主要体现在:①承重墙为生土、土坯等脆弱材料(图 5);②承重墙为干砌或泥结红砖;③存在短柱(图 6);④强弯弱剪、弱节点强构件;⑤有构造不良的围墙、连接不牢的吊灯、吊顶、玻璃等。
(3)“偏”主要体现在:①多层底商砌体房屋底层各道纵墙刚度差异超过3倍,易被个个击破(图 7);②多层框架有不当设置的半高填充墙,易因短柱的刚度大、延性差而被个个击破(图 8);③平面布局里出外进,如“L”、“T”、“Y”等形状;④立面布局蜂瓶细腰,层间刚度分布有突变等。
(4)“单”主要体现在:①抗侧防线单一,缺少冗余备份,如易形成层屈服机制的纯框架(图 9);②砌体结构圈梁、构造柱等措施缺失或不足;③窗间墙、窗端墙宽度过小等。
在2008年汶川8.0级地震的极震区(映秀和北川)仍有一批表现相当“顽强”的建筑,通过深入剖析这些“榜样建筑”的构造特点,可以发现它们无一例外很好地遵循经典力学原理,在构造上呈现“整而不散”、“延而不脆”、“匀而不偏”、“冗而不单”。大量细致的实验和理论分析工作揭示了这些经得起8.0级地震考验建筑的秘密,所得到的结果如果得到推广应用,将极大地提升中国整体抗御地震灾害的能力。
自2008年汶川地震后,笔者一直专注于极震区倒塌与不倒塌房屋构造上的差别,通过30余次振动台试验探讨了决定房屋倒塌的关键因素。结果显示,底商多层砌体房屋各道纵墙刚度、抗力均衡、多层框架结构配以适当的落地剪力墙,完全可以抗御8.0级地震而不倒。进而可以设想,对于与Ⅵ、Ⅶ、Ⅷ、Ⅸ度相当的地震动,不必将其作为抗震设防的对象,而把房屋结构自身的“散”、“脆”、“偏”、“单”作为设防的对象而加以克服,就可以实现“七级不坏,八级不倒”。
3. 工程抗震技术发展沿革
1923年,日本关东大地震造成14万人死亡,日本学者总结了这次地震的教训,提出将房屋自重的10%作为水平地震力,通过结构措施加以抗御,诞生了抗震设计的静力法。1933年,美国长滩地震获得了第一条强震记录,美国学者开始考虑地震的动力效应,并提出了“反应谱”的概念。反应谱法将建筑结构视为弹性体,能考虑结构与地震动之间的共振效应,对地震破坏的本质认识更加深入。1956年在旧金山召开了第一届世界地震工程大会,宣示1个与震害防御密切相关的学科——地震工程诞生了。从1964年开始,由于电子计算机技术的发展,专家学者又提出了建筑结构地震响应的时程分析法,这一方法能够考虑结构在强震下的非线性效应,技术进步明显,但因操作复杂而难以大面积推广应用。从1990年开始,美国学者又提出了“性态抗震设计方法”,这一方法区别对待重要性不同的结构在遭遇强震作用时的表现,比如学校和医院等人员密集型场所的公共建筑需要更强的抗震能力,从单纯关注生命安全扩展到减少经济损失。
进入21世纪以来,美国学者提出了韧性(Resilience)建筑的设计理念,基本涵义是考虑未来地震动极大的不确定性,通过设置多道防线,保证结构遭遇超设防地震时不致倒塌,由这样建筑构成的城市具有很强抗御地震打击的能力。
就中国而言,从1952年开始制定国家十二年科学发展规划时就列入了与震害防御相关的课题,如中国地震烈度表和中国地震烈度区划图、结构地震反应线性分析、建筑物动力特性测试、小比例结构模型动力实验、抗震设计草案编制、强震仪研制和布设等。由刘恢先主编的第1本抗震设计规范(草案)于1964年颁布,1978年颁布了正式版,即《工业与民用建筑抗震设计规范》。这2本规范均以反应谱理论作基础,考虑了场地条件的影响,强调构造措施的必要性。1966—1976年是中国灾难深重的10年,先后经历了1966年邢台地震、1970年通海地震、1975年海城地震、1976年松潘和唐山地震。邢台地震促使地震监测预报队伍的建立和完善;总结通海地震震害经验,提出了震害指数概念及考虑地形影响的方法;1975年海城地震是迄今为止公认为最成功的1次预报;1976年唐山地震的调查及深入研究,明确了圈梁、构造柱等构造措施的作用并写入规范,这一措施至今在中国乃至全世界仍发挥重要作用。
1989年的《建筑抗震设计规范》列入了可靠度理论,假定未来50年超越概率为63%的作为小震,10%的作为中震(设防烈度),2%—3%的作为大震,以小震不坏、中震可修、大震不倒作为结构抗震设计的基本原则,将刘恢先于1975年海城地震和1976年唐山地震总结的抗震设计基本原则以概率形式重新表达。但是可靠度理论的列入,并没有对应物理机制的改变,得到的计算方法比以前复杂得多,很多设计人员难以理解,只能以配套软件计算结果为主,缺乏概念的判断,使结构抗震设计陷入盲目。
自1976年唐山地震后,中国大震沉寂了多年,但2008年汶川8.0级地震造成8.9万同胞遇难,随后2010年和2013年又分别发生了玉树地震和芦山地震。详细考察表明,中国总体上建筑抗震能力是薄弱的,并且建筑结构地震破坏的状态与设计规范的预期有明显差异。以常见的钢筋混凝土框架结构为例,规范中以“层屈服机制”作为抗倒塌设计依据,在具体设计中人为实现“强柱弱梁”,然而震后从未发现过“强柱弱梁”,这表明规范所依据的结构倒塌机理与实际并不相符(郭迅,2018)。对于多层砌体及底商多层砌体等结构,建议的偏心扭转内力重分配、墙段平面内抗剪验算等理论和方法都与实际震害有很大差距。
另一方面,近年来的几次大地震中,即使是极震区,仍然有若干普通材料建造的多层砌体、多层框架等结构表现良好,堪称奇迹。深刻剖析表明,这些可以称之为“榜样建筑”(如紧邻断层的白鹿中学等)的结构都经受住了地面运动强度1.0g的考验。这就提示我们需要对现行规范按照Ⅶ度或Ⅷ度进行抗震分析、验算的做法进行反思。规范所期望出现的震害现象没见到,规范未预料到的超强抗震表现却屡见不鲜。事实表明,现行规范对中国常见建筑结构的地震倒塌机理的认识还不够完善,技术供给与现实需求有巨大差距。震害防御工作的重点就是要缩小这一差距,这是减轻未来地震人员伤亡的根本途径。
4. 工程抗震新技术
由于地震是罕遇事件,如果把地震荷载等同于重力荷载来对待是不科学的。为此,工程界提出2种实用的抗震新技术,分别是隔震技术和消能减震技术。
(1) 隔震技术
地震引起地面往复运动,使得地面上房屋以及各种工程结构受到一定的惯性力,当惯性力超过了结构自身抗力,则结构将出现破坏。这就是大地震造成房屋破坏、桥梁塌落以及其它诸多工程设施损毁的原因。
隔震是将工程结构体系与地面分隔开来,并通过1套专门的支座装置与地面相连接,形成1个水平向柔弱层(图 10),以此延长结构的基本振动周期(图 11),避开地震动的卓越周期,减弱地震能量向结构上传输,降低结构的地震反应。由工程经验来看,多层框架结构经隔震以后,自振周期可由原来的0.3—0.5s延长到2.0—3.0s,避开了地震动卓越周期(0.1—0.5s),可将地表传给上部结构的地震作用降低70%左右。19世纪末就有学者和工程技术人员提出了隔震的概念。采用基底隔震技术建造的房屋,能够极大地消除结构与地震动的共振效应,显著降低上部结构的地震反应,从而可以有效地保护结构免遭地震破坏。
目前全世界建造了2万余栋隔震建筑,中国有5000余栋。美国、日本、新西兰等国的上百栋隔震建筑经历了地震考验,表现出卓越的抗震性能。在中国2013年芦山地震中,人民医院因为采用了隔震技术(图 12),不但没有人员伤亡,内部的核磁共振、彩超、X光机等精密医疗设备也没有任何损伤,医院成为震后伤员救治中心(图 13)。
(2) 消能减震技术
消能减振是指在结构中设置阻尼器或阻尼构件,通过改变体系动力特性、吸收耗散振动能量以减小地震反应的技术。在地震往复荷载作用下,结构发生以位移、速度和加速度表示的响应,如果在结构上安装位移驱动或速度驱动的阻尼器,如防屈曲支撑(BRB)、钢滞变阻尼器(图 14)、TMD(Tuned Mass Damper)、TLD(Tuned Liquid Damper)以及各类油阻尼器等,可以增加结构的等效阻尼比(图 15),从而减小结构的地震响应,减轻甚至避免结构的破坏(张敏政,2015)。
5. 当前韧性城乡建设工作的主要抓手
中国城乡建筑抗震能力还较薄弱,与建设小康社会的需求还有很大差距。震害防御工作的目标是全面提升城乡建筑抗震能力,做到中小震无害,大震小害。为此,需客观面对中国城乡建筑中较普遍存在的“散”、“脆”、“偏”、“单”的问题,认真吸取近年来破坏性地震中正反两方面的经验和教训,从技术上实现“整而不散”、“延而不脆”、“匀而不偏”和“冗而不单”。具体措施有以下几个方面:
(1) 技术标准的建立:将最新实用技术(如“散”、“脆”、“偏”、“单”评估法)写入行业标准,以利推广应用。
(2) 技术标准贯彻落实:在城市新建建筑结构的设计施工过程中严格遵循新标准。
(3) 既有建筑的筛查:依据设计标准的技术原理和操作流程,分期分批推进城乡既有建筑抗震缺陷的筛查,依结果提出有针对性的补强措施。
(4) 大力推广减隔震技术的应用。
6. 结论
中国地震灾害形势依然严峻。以韧性城乡为标志的新时期防震减灾目标成为业界共识。韧性城乡的主要特点是城乡、工程结构及构件等各个层次都具有很强的抗震能力,即便地震相当强烈,城乡基本功能也能很快恢复。建设韧性城乡,首先需要对城乡抗震能力的现状进行科学评估。基于震害类比、实验验证和理论分析,总结提炼出的工程结构抗震能力“散、脆、偏、单”评估法是韧性城乡建设的有力工具。对于新建工程,宜大力推广隔震与消能减震新技术。
-
图 2 研究区地质简图①
注:F1. 练江断裂;F2. 榕江断裂;F3. 韩江断裂;F4. 普宁-潮州断裂;F5. 饶平-汕头断裂;F6. 桑浦山断裂
Figure 2. Geological map of the Chaoshan basin
表 1 潮汕盆地隐伏断裂活动性特征
Table 1. Active features of the buried faults in the Chaoshan basin
断裂名称 断层倾向 断层性质 上断点埋深/m 全新统深度/m 推测最新活动时代 榕江断裂 F2-1 北东 正断层 50~63 18~20 ${\rm{Q}}_{\rm{p}}^3 $ F2-2 南西 正断层 30~37 18~20 ${\rm{Q}}_{\rm{p}}^3 $ F2-3 北东 正断层 46~52 13~25 ${\rm{Q}}_{\rm{p}}^3 $ F2-4 南西 正断层 46~54 13~25 ${\rm{Q}}_{\rm{p}}^3 $ 韩江断裂 F3-1 南西 正断层 40~81 12~26 ${\rm{Q}}_{\rm{p}}^3 $ F3-2 北东 正断层 40~43 12~26 ${\rm{Q}}_{\rm{p}}^3 $ 饶平-汕头断裂 F5-1 北西 逆断层 51~56 19~27 ${\rm{Q}}_{\rm{p}}^3 $ F5-2 南东 正断层 45 19~28 ${\rm{Q}}_{\rm{p}}^3 $ 普宁-潮州断裂 F4-1 南东 逆断层 36~42 11~25 ${\rm{Q}}_{\rm{p}}^3 $ F4-2 北西 逆断层 70~78 11~25 ${\rm{Q}}_{\rm{p}}^2 $ 注:断点附近全新统底界深度参考其周围收集的钻孔资料(李平日等,1987;王建华等,1997;凌恳等,2022)。 -
陈恩民, 黄咏茵, 1984. 华南十九次强震暨南海北部陆缘地震带概述. 华南地震, 4(1): 11—32. 陈洪禄, 1984. 福建沿海地区断裂近期活动性与地震. 华南地震, 4(2): 37—41. 陈伟光, 1984. 广东潮汕地区沉积盆地发育的若干特征. 华南地震, 4(2): 20—30. 陈园田, 谢志招, 王志鹏等, 2001. 福建漳州盆地的最新构造活动和地震危险性. 地震地质, 23(4): 556—563Chen Y. T. , Xie Z. Z. , Wang Z. P. , et al. , 2001. The latest tectonic motion and seismic risk in Zhangzhou basin, Fujian province. Seismology and Geology, 23(4): 556—563. (in Chinese) 褚明记, 万天丰, 1988. 福建漳州盆地活动断裂研究. 地质科学, (1): 11—24Chu M. J. , Wan T. F. , 1988. The research on active faults in Zhangzhou basin, Fujian province. Scientia Geologica Sinica, (1): 11—24. (in Chinese) 邓起东, 徐锡伟, 张先康等, 2003. 城市活动断裂探测的方法和技术. 地学前缘, 10(1): 93—104Deng Q. D. , Xu X. W. , Zhang X. K. , et al. , 2003. Methods and techniques for surveying and prospecting active faults in urban areas. Earth Science Frontiers, 10(1): 93—104. (in Chinese) 董传万, 张登荣, 徐夕生等, 2006. 福建晋江中-基性岩墙群的锆石SHRIMP U-Pb定年和岩石地球化学. 岩石学报, 22(6): 1696—1702Dong C. W. , Zhang D. R. , Xu X. S. , et al. , 2006. SHRIMP U-Pb dating and lithogeochemistry of basic-intermediate dike swarms from Jinjiang, Fujian province. Acta Petrologica Sinica, 22(6): 1696—1702. (in Chinese) 李峰, 环文林, 2021. 粤东滨海断裂带第四纪活动特征研究. 震灾防御技术, 16(1): 19—28Li F. , Huan W. L. , 2021. Quaternary activity characteristics of the coastal fault zone in eastern Guangdong. Technology for Earthquake Disaster Prevention, 16(1): 19—28. (in Chinese) 李平日, 黄镇国, 宗永强等, 1987. 韩江三角洲. 北京: 海洋出版社.Li P. R. , Huang Z. G. , Zong Y. Q. , et al. , 1987. Han River delta. Beijing: China Ocean Press. (in Chinese) 李三忠, 曹现志, 王光增等, 2019. 太平洋板块中-新生代构造演化及板块重建. 地质力学学报, 25(5): 642—677 doi: 10.12090/j.issn.1006-6616.2019.25.05.060Li S. Z. , Cao X. Z. , Wang G. Z. , et al. , 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate. Journal of Geomechanics, 25(5): 642—677. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.05.060 林纪曾, 1983. 东南沿海地区地震形势的探讨. 华南地震, 3(S1): 1—10. 林松建, 丁学仁, 陈为伟等, 2009. 福建地区震源机制解与现代构造应力场研究. 大地测量与地球动力学, 29(5): 27—32Lin S. J. , Ding X. R. , Chen W. W. , et al. , 2009. Research on focal mechanism solutions and tectonic stress field in Fujian region. Journal of Geodesy and Geodynamics, 29(5): 27—32. (in Chinese) 凌恳, 朱世博, 李瑞等, 2022. 广东潮汕平原第四系一个新的岩石地层单位——炮台组. 地层学杂志, 46(1): 101—108Ling K. , Zhu S. B. , Li R. , et al. , 2022. A new lithostratigraphic unit of Quaternary in Chaoshan Plain-Paotai Formation. Journal of Stratigraphy, 46(1): 101—108. (in Chinese) 刘保金, 张先康, 方盛明等, 2002. 城市活断层探测的高分辨率浅层地震数据采集技术. 地震地质, 24(4): 524—532Liu B. J. , Zhang X. K. , Fang S. M. , et al. , 2002. Acquisition technique of high-resolution shallow seismic data for surveying of urban active faults. Seismology and Geology, 24(4): 524—532. (in Chinese) 刘保金, 赵成彬, 尹功明等, 2008. 浅层人工地震P波和S波资料揭示的郑州老鸦陈断层特征. 地震地质, 30(2): 505—515Liu B. J. , Zhao C. B. , Yin G. M. , et al. , 2008. The characteristics of the Laoyachen fault in Zhengzhou revealed by shallow seismic data of P wave and S wave. Seismology and Geology, 30(2): 505—515. (in Chinese) 龙云作, 1997. 珠江三角洲沉积地质学. 北京: 地质出版社, 1—157. 卢帮华, 黄日恒, 2006. 东南沿海地区的断裂与地震. 华南地震, 26(3): 109—118Lu B. H. , Huang R. H. , 2006. Faults and earthquakes in the southeast coastal region of China. South China Journal of Seismology, 26(3): 109—118. (in Chinese) 卢帮华, 王萍, 王慧颖等, 2020. 珠江三角洲西缘西江断裂鹤山-磨刀门段的活动性. 地震地质, 42(6): 1370—1384Lu B. H. , Wang P. , Wang H. Y. , et al. , 2020. Latest progress on activity of Heshan-Modaomen segment, Xijiang Fault. Seismology and Geology, 42(6): 1370—1384. (in Chinese) 舒良树, 于津海, 王德滋, 2000. 长乐-南澳断裂带晚中生代岩浆活动与变质-变形关系. 高校地质学报, 6(3): 368—378Shu L. S. , Yu J. H. , Wang D. Z. , 2000. Late Mesozoic granitic magmatism and its relation to metamorphism-ductile deformation in the Changle-Nan’ao fault zone, Fujian province. Geological Journal of China Universities, 6(3): 368—378. (in Chinese) 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035—1053 doi: 10.3969/j.issn.1671-2552.2012.07.003Shu L. S. , 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China, 31(7): 1035—1053. (in Chinese) doi: 10.3969/j.issn.1671-2552.2012.07.003 宋方敏, 汪一鹏, 李传友等, 2001. 珠江三角洲五桂山南麓断裂第四纪活动新知. 地震地质, 23(4): 521—526Song F. M. , Wang Y. P. , Li C. Y. , et al. , 2001. New insight into the Quaternary activity of Wuguishan southern piedmont fault in Zhujiang delta. Seismology and Geology, 23(4): 521—526. (in Chinese) 宋方敏, 汪一鹏, 李传友等, 2003. 珠江三角洲部分断裂晚第四纪垂直位移速率. 地震地质, 25(2): 203—210Song F. M. , Wang Y. P. , Li C. Y. , et al. , 2003. Late Quaternary vertical dislocation rate on several faults in the Zhujiang delta area. Seismology and Geology, 25(2): 203—210. (in Chinese) 宋毅盛, 陈文彬, 潘华等, 2012. 练江平原第四系的时代. 吉林大学学报(地球科学版), 42(S1): 154—161Song Y. S. , Chen W. B. , Pan H. , et al. , 2012. Geological age of Quaternary series in Lianjiang plain. Journal of Jilin University (Earth Science Edition), 42(S1): 154—161. (in Chinese) 孙金龙, 徐辉龙, 詹文欢等, 2012. 南海北部陆缘地震带的活动性与发震机制. 热带海洋学报, 31(3): 40—47Sun J. L. , Xu H. L. , Zhan W. H. , et al. , 2012. Activity and triggering mechanism of seismic belt along the northern South China Sea continental margin. Journal of Tropical Oceanography, 31(3): 40—47. (in Chinese) 王德滋, 赵广涛, 邱检生, 1995. 中国东部晚中生代A型花岗岩的构造制约. 高校地质学报, 1(2): 13—21Wang D. Z. , Zhao G. T. , Qiu J. S. , 1995. The tectonic constraint on the late Mesozoic A-type granitoids in eastern China. Geological Journal of Universities, 1(2): 13—21. (in Chinese) 王建华, 郑卓, 吴超羽, 1997. 潮汕平原晚第四纪沉积相与古环境演变. 中山大学学报(自然科学版), 36(1): 95—100Wang J. H. , Zheng Z. , Wu C. Y. , 1997. Sedimentary facies and paleoenvironmental evolution of the Late Quaternary in the Chao-Shan Plain, East Guangdong. Acta Scientirum Naturalium Universitats Sunyatseni, 36(1): 95—100. (in Chinese) 汪一鹏, 宋方敏, 黄卿团等, 2001. 潮汕平原北西向断裂左旋走滑运动的地貌证据和速率. 中国地震, 17(1): 35—43Wang Y. P. , Song F. M. , Huang Q. T. , et al. , 2001. Geomorphic evidence for and rate of sinistral strike-slip movement along northwest-trending faults in Chaoshan plain. Earthquake Research in China, 17(1): 35—43. (in Chinese) 谢叶彩, 王强, 龙桂等, 2014. 珠江口小榄镇-万顷沙地区晚更新世以来的海侵层序. 古地理学报, 16(6): 835—852 doi: 10.7605/gdlxb.2014.06.067Xie Y. C. , Wang Q. , Long G. , et al. , 2014. Transgressive sequence since the Late Pleistocene in Xiaolan town-Wanqingsha area, Zhujiang river estuary. Journal of Palaeogeography, 16(6): 835—852. (in Chinese) doi: 10.7605/gdlxb.2014.06.067 徐先兵, 李源, 薛德杰等, 2014. 福建泉州晚中生代伸展构造变形特征与年代学制约. 地球科学—中国地质大学学报, 39(1): 45—63 doi: 10.3799/dqkx.2014.005Xu X. B. , Li Y. , Xue D. J. , et al. , 2014. Deformation characteristics and geochronological constraints of Late Mesozoic extensional structures in Quanzhou, Fujian province. Earth Science—Journal of China University of Geosciences, 39(1): 45—63. (in Chinese) doi: 10.3799/dqkx.2014.005 张虎男, 1983. 断裂作用与韩江三角洲的形成和发展. 海洋学报, 5(2): 202—211. 张虎男, 吴堑虹, 1994. 华南沿海主要活动断裂带的比较构造研究. 地震地质, 16(1): 43—52Zhang H. N. , Wu Q. H. , 1994. A comparative study of main active fault zones along the coast of South China. Seismology and Geology, 16(1): 43—52. (in Chinese) 张路, 2008. 福建东南沿海盆地第四纪构造运动模式与动力学成因. 北京: 中国地震局地质研究所.Zhang L. , 2008. A kinematie model and dynamic cause of quaternary tectonic movement of southeastern coastal basins in Fujian province. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese) Chen W. , Hu X. Y. , Zhuang Q. X. , et al. , 2019. Two‐stage Cenozoic evolution of NW–SE‐trending faults in the coastal area of southeast China controlled the fan‐shaped Zhangzhou basin. Terra Nova, 31(5): 445—457. doi: 10.1111/ter.12414 Liu P., Mao J. W., Santosh M., et al., 2018. Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie'shan W-Sn deposit in the eastern Guangdong Province, SE China: Implications for W-Sn mineralization and geodynamic setting. Lithos, 300—301: 330—347. Sibuet J. C., Hsu S. K., Le Pichon X., et al., 2002. East Asia plate tectonics since 15 Ma: constraints from the Taiwan region. Tectonophysics, 344(1—2): 103—134. Sibuet J. C., Hsu S. K., 2004. How was Taiwan created?. Tectonophysics, 379(1—4): 159—181. 期刊类型引用(9)
1. 闫华敏,李磊,李林涛,李彦尊,李玲,张威,彭晨昂. 基于层次分析法和模糊评价法的中国近海盆地CO_2封存适宜性评价. 海洋地质前沿. 2024(01): 79-93 . 百度学术
2. 翟娟,洪德全,朱亮,赵梦强,杨震. 地震活动性多参数方法研究华北地区强震危险性. 华南地震. 2024(01): 63-72 . 百度学术
3. 尚鲁宁,潘军,曹瑞,周青春,孔祥淮. 基于重磁数据研究江苏岸外滨海断裂带及邻区构造特征. 华东地质. 2024(01): 101-114 . 百度学术
4. 宋程,张永仙,夏彩韵,毕金孟,张小涛,吴永加,徐小远. 基于PI方法的华北2019年以来3次M_S≥5.0地震回溯性预测研究. 地震. 2024(02): 120-134 . 百度学术
5. 沙海军,吕悦军,彭艳菊,谢卓娟,修立伟. 渤海及邻区地震活动的周期性特征及其在地震预测中的应用. 中国地震. 2024(04): 868-876 . 百度学术
6. 张延保,马潇,胡峰,翟鸿宇. 海底节点不同震相逆时偏移成像研究. 震灾防御技术. 2023(03): 559-567 . 本站查看
7. 吴果,冉洪流,周庆,谢卓娟. 中国海域及邻区自适应空间平滑地震活动模型. 地震地质. 2022(01): 150-169 . 百度学术
8. 黎明晓,邓世广,马玉川,解孟雨,王月,郭菲. 2021年11月17日江苏大丰海域M_S 5.0地震总结. 地震地磁观测与研究. 2022(04): 148-159 . 百度学术
9. 冯思琦,吴清,沈鎏澄,王惠铎,温家洪. 1990-2015年中国沿海低地地震高危险性地区的人口暴露研究. 震灾防御技术. 2022(04): 719-726 . 本站查看
其他类型引用(0)
-