• ISSN 1673-5722
  • CN 11-5429/P

波浪地震联合作用下砂质海床沉管隧道动力响应分析

白笑笑 马锐 王秋哲 鹿庆蕊 赵凯 陈国兴

徐伟进,李雪婧,谢卓娟,吕悦军,高战武,2021. 中国海域及邻区地震时间分布特征研究. 震灾防御技术,16(1):39−50. doi:10.11899/zzfy20210105. doi: 10.11899/zzfy20210105
引用本文: 白笑笑,马锐,王秋哲,鹿庆蕊,赵凯,陈国兴,2023. 波浪地震联合作用下砂质海床沉管隧道动力响应分析. 震灾防御技术,18(1):65−74. doi:10.11899/zzfy20230108. doi: 10.11899/zzfy20230108
Xu Weijin, Li Xuejing, Xie Zhuojuan, Lv Yuejun, Gao Zhanwu. Temporal Distribution Characteristics of Earthquakes in the China Sea and Adjacent Areas[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 39-50. doi: 10.11899/zzfy20210105
Citation: Bai Xiaoxiao, Ma Rui, Wang Qiuzhe, Lu Qingrui, Zhao Kai, Chen Guoxing. Study on Interaction of Sandy Seabed-immersed Tunnel under Combined Action of Earthquake and Wave[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 65-74. doi: 10.11899/zzfy20230108

波浪地震联合作用下砂质海床沉管隧道动力响应分析

doi: 10.11899/zzfy20230108
基金项目: 国家自然科学基金(51978335、52168044);国家重点研发计划(2017YFC15004003)
详细信息
    作者简介:

    白笑笑,男,生于 1995 年。博士研究生。主要从事海洋岩土工程防灾减灾工作。E-mail:bxx@njtech.edu.cn

    通讯作者:

    赵凯,男,生于 1982 年。博士,教授。主要从事岩土地震工程工作。E-mail:zhaokai@njtech.edu.cn

Study on Interaction of Sandy Seabed-immersed Tunnel under Combined Action of Earthquake and Wave

  • 摘要: 对于埋置于海床表层的沉管隧道,波浪作用是不容忽视的常遇海洋环境因素。不同于陆域地下结构,海底沉管隧道地震反应分析和安全评价应考虑波浪的联合作用。基于Biot完全耦合的动力有效应力分析方法,对波浪与地震联合作用下砂质海床-隧道之间的动力相互作用特性进行研究。研究结果表明,相较仅有地震作用,波浪荷载加速了沉管隧道周围海床地震残余超孔压的增长和渐进液化进程,增大了沉管隧道上浮量;波浪与地震联合作用对应的β谱谱值更大,且卓越反应周期向长周期偏移;波浪对海床地震动的影响深度有限,仅对海床地表以下15 m范围内的地震动有放大效应。忽略波浪环境作用对砂质海床场地设计地震动参数的影响,对于沉管隧道抗震设计是偏于不安全的。
  • 中国地震台网正式测定,2021年8月26日7时38分18秒在甘肃省酒泉市阿克塞哈萨克族自治县(38.88°N,95.50°E)发生5.5级地震,震源深度15 km,宏观震中位于酒泉市阿克塞哈萨克族自治县阿勒腾乡一带,微观震中位于无人区,极震区烈度为Ⅶ度,震区地势较平坦,周边人口密度极小。震中距阿勒腾乡35 km,距阿克塞哈萨克族自治县131 km,距酒泉市274 km。震中附近密集分布党河南山主峰断裂、党河南山北缘断裂、党河南山南缘断裂东段、大哈勒腾河断裂等多条发育断裂。在震中方圆50 km范围内,发生2次震级为5.0级及以上的历史地震,最大历史地震为1917年9月5日发生在青海乌兰附近的5.7级地震,距本次地震震中45 km。本次地震震级较小,震害轻,但灾害特征典型,有显著的震灾防御启示(柴少峰等,2016谭杰等,2020马小平,2020柏文等,2021),因此本文根据应急响应和现场震害调查情况,分析震害特征与原因,归纳总结震害经验与启示,为本地区防震减灾工作提供帮助,对防范化解未来重大地震灾害提供科学依据和理论基础,也为后期开展中强地震现场调查与震害研究提供参考(洪海春等,2011周军学等,2017石玉成等,20172020薄景山等,2018余世舟,2018)。

    地震发生后,甘肃省地震局工作人员第一时间到达应急指挥大厅,按照《甘肃省地震局地震应急预案》和《甘肃省地震局地震应急工作流程》要求有序开展地震应急处置工作,成立省地震局应急指挥部,分组开展相应工作,通过视频及时向应急管理部、中国地震局、省委省政府报告灾情。同时,按照应急管理部、中国地震局、省委省政府指示精神,派出由10名专业技术人员组成的现场应急工作队赶赴震中,并会同酒泉市地震局、阿克塞哈萨克族自治县应急局、兰州地震监测中心站、嘉峪关地震监测中心站工作人员,分组开展地震灾情现场调查核实与地震灾害评估工作。

    本次地震震区涉及阿克塞哈萨克族自治县和肃北蒙古族自治县,灾区最大烈度为Ⅶ度,总面积为1 352 km2,其中Ⅶ度区长轴为8.5 km,短轴为6 km,面积为36 km2,涉及阿勒腾乡;Ⅵ度区长轴为50 km,短轴为36 km,面积为1 316 km2,涉及阿勒腾乡、党城湾镇、盐池湾乡等。此外,位于Ⅵ度区之外的阿勒腾乡哈尔腾村存在Ⅵ度异常点,该区域存在牧民住房和圈舍,灾害较明显,主要表现为土木结构圈舍墙体坍塌、牧民砖混结构住房墙体开裂、围墙出现贯穿性裂缝、门窗顶出现X形裂缝等。地震烈度如图1所示。

    图 1  甘肃省阿克塞5.5级地震烈度
    Figure 1.  Intensity map of Akesai M5.5 earthquake in Gansu province

    经现场灾情调查,阿克塞哈萨克族自治县、肃北蒙古族自治县县城震感较明显,瓜州县、敦煌市和玉门市均有震感,嘉峪关市部分高层居民有震感,但无明显震害,无人员伤亡,震区生活秩序正常。地震灾害主要表现为极震区(Ⅶ度区)部分老旧石砌房屋墙体局部坍塌,山体出现小范围局部滑坡,部分地表出现裂缝;Ⅵ度区少数土木、砖木结构房屋发生中等破坏,砖混结构房屋墙体出现轻微破坏。阿克塞哈萨克族自治县、肃北蒙古族自治县县城供水、供电、供热等基础设施基本完好,震中附近水文观测站、在建风热发电基地等设施轻微受损。震区地势平坦,无地质灾害发育,震区人民生产生活秩序正常,群众情绪稳定,无需转移安置人员。

    本区域多民族杂居,阿克塞哈萨克族自治县位于甘肃省西部,在甘肃省、青海省、新疆维吾尔自治区交界处,处于柴达木盆地荒漠与河西走廊荒漠包围之中,地形呈狭长状,境内东南高、西北低,平均海拔3 200 m,辖区总面积为3.14万km2,现辖1个镇、3个乡,2019年年末总人口0.975 8万人,常住人口0.974 6万人,人口密度为0.31人/ km2,国民生产总值15.31亿元,境内有敦格铁路、215国道、314省道、瓜格高速等多条交通路网,是进出新疆维吾尔自治区、青海省及西藏自治区的重要关口,境内祁连山西向余脉与阿尔金山东向余脉连成一片,在地质构造上属挽近缓慢隆升区,受挽近构造运动影响,平原基底内不均匀隆升,第四纪松散堆积层厚,其发育的主要活动断裂包括阿尔金断裂带北缘断裂、阿尔金断裂带南缘断裂、党河南山主峰断裂。全县有潜在地质灾害26处,其中泥石流17处、崩塌5处、不稳定斜坡4处,主要分布在红柳湾镇境内。

    肃北蒙古族自治县位于酒泉市南部和北部,现辖2个镇、2个乡,总面积为5.53万km2,辖地分为南山地区和北山地区。其中,靠近震中的南山地区地处祁连山西段、青藏高原东北边缘,属河西内陆河流域,东南高、西北低;北部祁连山西段高山区地势高耸,有高山、深谷和山间盆地。2019年年末总人口1.23万人,常住人口1.54万人,有汉族、蒙古族等9个民族,国民生产总值16.31亿元,境内有敦格铁路、额哈铁路、215国道、216省道、302省道等多条交通路网,境内主要活动断裂有党河南山北缘断裂、党河南山主峰断裂、昌马断裂、大泉-黑尖山断裂、阿尔金断裂带北缘断裂、野马山断裂(西段)、野马山断裂(大雪山北缘)、中祁连南缘断裂、疏勒南山断裂、中祁连北缘断裂(西段)等,全县有潜在地质灾害28处,其中泥石流12处、不稳定斜坡8处、崩塌6处、塌陷2处,主要分布在党城湾镇境内。

    根据《中国地震动参数区划图》(GB 18306—2015)(中华人民共和国国家质量监督检验检疫总局等,2016),本地区地震动峰值加速度为0.15 ~0.20 g,抗震设防均高于Ⅶ度设防,震区行政区划如图2所示。

    图 2  震区行政区划
    Figure 2.  Administrative division map of earthquake

    本次地震震中位于阿尔金断裂东段与祁连山的构造转换部位,区域断裂密集发育(图3)。根据邵延秀等(2011)的研究成果,距震中相对较近的党河南山北缘断裂及党河南山北缘断裂西段(后塘断裂)为全新世活动断层,沿断裂带残留有历史地震地表破裂带。

    图 3  震区地质构造
    Figure 3.  Geological structure map of earthquake area

    本次地震破裂类型为逆冲型(图4),节面Ⅰ走向329°,倾角44°,滑动角75°;节面Ⅱ走向169°,倾角48°,滑动角104°;主压应力P轴方位角249°(NE69°),倾角2°;主张应力T轴方位角148°,倾角79°。从震源应力场来看,本次地震属于印度板块NE向推挤欧亚板块的构造应力场作用下发生的逆冲型地震。根据震源机制解及震中位置,推测本次地震是青藏高原向北推挤过程中,党河南山向南反冲作用形成。

    图 4  地震震源机制解
    Figure 4.  Earthquake focal mechanism solution

    依据《地震现场工作 第3部分:调查规范》(GB/T 18208.3—2011)(中华人民共和国国家质量监督检验检疫总局等,2012)、《地震现场工作 第4部分:灾害直接损失评估》(GB/T 18208.4—2011)(中华人民共和国国家质量监督检验检疫总局等,2012)的要求开展地震灾害调查,得到本次地震具有以下特点:余震次数少且震级较小,目前甘肃测震台网共记录到4次余震,最大余震为2021年8月26日23时28分发生的3.7级地震;本次地震属中强地震,但震害轻,极震区属无人区,人口密度极小,未造成人员伤亡;地震发震断裂未出露地表,地质灾害未发育,山体局部出现小范围的垮塌、落石现象;生命线工程未出现明显破坏现象。

    本次地震VII度区范围内土木结构房屋、砖木结构房屋、彩钢房、牲畜圈舍等震害较明显,其他结构房屋震害较轻,另外,存在山体局部垮塌、落石现象。具体震害主要表现为:砖木、土木结构房屋墙体出现轻微裂缝,围墙出现坍塌现象(图5(a)~(d));距震中100 m处山体出现垮塌、落石现象,跨度5 m,山体上盘存在裂缝,裂缝宽度为2~3 cm,长5 m,裂缝呈南北向分布(图5(e)~(h);石砌结构牲畜圈舍坍塌(图5(i)~(k));彩钢房倒塌(图5(l)~(n))。

    图 5  Ⅶ度区破坏情况
    Figure 5.  Destruction situation in Ⅶ

    本次地震VI度区范围内震害较轻,基本无明显震害,主要表现为:少数砖木结构老旧房屋发生中等破坏,墙体陈旧裂缝增大(图6(a)~(d));土木结构房屋墙体出现较多裂缝,墙皮掉落严重,梁柱结合处出现拉裂现象(图6(e)~(g));位于Ⅵ度区外的哈尔腾村存在Ⅵ度异常点,灾害较明显,砖混结构房屋墙体出现横向、斜向裂缝,墙皮脱落,围墙出现裂缝、掉砖(图6(h)~(k))。

    图 6  Ⅵ度区破坏情况
    Figure 6.  Destruction situation in Ⅵ

    (1)土木结构房屋破坏的主要原因包括:夯土墙体与梁檩处无拉结措施,导致屋顶与屋面未有效连结,易出现裂缝;纵、横墙体之间缺乏有效的拉结措施,导致侧墙易侧翻。

    (2)砖木结构房屋破坏的主要原因包括:纵、横墙体之间缺乏有效拉结措施,且墙体砌筑砂浆强度不足,导致砖墙易出现裂缝;门、窗开洞过大,且门窗间的梁檩过小,承重强度不足,导致门窗处出现X形裂缝。

    (3)牲畜圈舍破坏的主要原因包括:砌筑墙体的砂石强度及砂浆强度不足,圈舍顶部与墙面无拉结措施,易坍塌。

    (4)彩钢房破坏的主要原因包括:墙体过于轻薄,钢结构框架强度及连结处强度不足;彩钢墙面与框架之间拉结强度不足,易坍塌。

    (5)发生地震地质灾害的主要原因包括:震区属干旱半干旱荒漠气候,地貌多为戈壁、沙漠,降雨量较少,植被覆盖度较低,且新构造运动、冰川、风蚀作用强烈,岩层破碎,易导致山体局部出现小范围的垮塌、落石现象。

    通过对本次地震应急响应、现场灾情调查、烈度评定等进行综合分析,得出以下启示:

    (1)本次地震震中附近人员和房屋稀少,且牧民已完成转场,所以未造成人员伤亡和重大财产损失。由于震中附近区域地下水位较浅,部分Ⅵ度区范围内的孤立房屋地震放大效应显著,震害显著加重(兰日清等,2013)。

    (2)近年来,在省委省政府的正确领导下,当地党委、政府大力推进牧民定居工程和城市化建设工作,阿克塞哈萨克族自治县和肃北蒙古族自治县城镇化率均已达到90%以上,震中附近牧民已全部移居县城,震中位于无人区;随着近年来祁连山生态环境保护工程持续推进,震区附近的矿场和企业均处于关停状态,无人员驻守和生产情况,所以地震未造成人员伤亡和重大财产损失。

    (3)随着抗震安居工程、危旧房改造工程的推进与实施,研究区房屋采取了一定抗震设防措施,具有显著的减灾实效,因此绝大多数房屋经受住了本次地震的考验,今后需继续加大力度改造农村危旧房,并推进农居房屋抗震加固工程,做到“小震不坏、中震可修、大震不倒”,切实保证农居房屋建造质量(陈相兆等,2017)。

    (4)通过近年来开展的地震科普宣传工作,民众具备识别地震谣言、避险和自救互救的知识。各级政府的有利引导下,地震发生后民众应对从容,情绪稳定,生产生活正常有序,今后需加强对防震减灾的科普宣传,进一步提高民众应对地震灾害的能力,增强自救互救能力。

    (5)受牧区居住季节性影响,牧民随着季节进行转场,造成大批房屋仅作为放牧时的临时住所,维修不及时,造成一定的地震安全隐患,政府及技术人员应尽快引导牧民及时消除安全隐患。

    (1)本次地震总体震害较轻,大部分牧民可做到生产生活自救,但对于少数受灾相对较重的牧民,应对其房屋进行安全性鉴定,及时拆除危房,修复受损房屋,并给予必要的人文关怀和资金救助。

    (2)震区附近地震监测台网数量较少,对于快速测报地震和准确定位具有一定影响,应在地震监测站网布局中予以重视和加强。

    (3)各级政府、有关部门需进一步梳理和完善地震应急处置体制机制,补齐工作短板,强化工作协同机制,努力推动防震减灾和应急管理事业改革发展。

    致谢 本文部分内容引自甘肃省阿克塞5.5级地震现场工作队资料,感谢现场工作队员张晓工程师等的辛勤工作,感谢甘肃省地震局应急服务中心朱瑞工程师在文章撰写方面提供帮助,感谢酒泉市地震局、嘉峪关和张掖地震监测中心站工作人员在地震应急工作中的鼎力帮助,感谢评审专家对本文提出的宝贵意见。

  • 图  1  波浪与地震联合作用下海床-沉管体系相互作用示意图

    Figure  1.  Interaction of seabed-Immersed tunnel under combined action of wave and earthquake

    图  2  土体循环塑性本构关系示意图

    Figure  2.  Cyclic plastic constitutive relation of soil

    图  3  土单元测试示意图

    Figure  3.  Diagram of soil unit test

    图  4  单元测试结果与试验结果对比

    Figure  4.  Comparison of unit test results and test results

    图  5  模型网格划分

    Figure  5.  Division of numerical model grid

    图  6  Kobe波加速度时程及傅里叶谱

    Figure  6.  Input ground motion of Kobe wave and fourier spectrum

    图  7  测点布置

    Figure  7.  Diagram of monitor point layout

    图  8  不同测点处超孔压和超孔压比

    Figure  8.  Comparison of excess pore pressure and excess pore pressure ratio at different monitor points (z = 6 m)

    图  9  有无波浪荷载时地震作用下海床的渐进液化对比

    Figure  9.  Comparison of progressive liquefaction of seabed under earthquake with and without wave load

    图  10  海床表面距沉管不同距离处的动力系数对比

    Figure  10.  Comparison of dynamic coefficients at different distances from seabed surface to immersed tunnel

    图  11  沿海床深度的峰值加速度放大系数

    Figure  11.  The peak acceleration amplification factor at different depths of the immersed tunnel side wall

    图  12  沉管隧道上浮时程对比

    Figure  12.  Comparison diagram of uplift of immersed tunnel

    表  1  土单元计算参数

    Table  1.   Calculation parameters of soil element

    相对密度Dr/%Davidenkov模型孔压模型莫尔-库仑模型
    ABγ0C1C2C3黏聚力c/kPa内摩擦角ϕ /(°)抗拉强度T/kPa
    501.020.354.1×10−40.9970.1501.250300
    下载: 导出CSV

    表  2  数值模型计算参数

    Table  2.   Calculation parameters of numerical model

    相对密度Dr/%Davidenkov模型孔压模型莫尔-库仑模型
    ABγ0C1C2C3黏聚力c/kPa内摩擦角ϕ /(°)抗拉强度T/kPa
    501.030.43.9×10−40.430.931.250300
    下载: 导出CSV
  • 陈国兴, 岳文泽, 阮滨等, 2021. 金塘海峡海床地震反应特征的二维非线性分析. 岩土工程学报, 43(11): 1967—1975

    Chen G. X. , Yue W. Z. , Ruan B. , et al. , 2021. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang strait. Chinese Journal of Geotechnical Engineering, 43(11): 1967—1975. (in Chinese)
    崔杰, 周鹏, 李亚东等, 2016. 地震作用下海底沉管隧道的动力响应分析. 地震工程与工程振动, 36(4): 96—102 doi: 10.13197/j.eeev.2016.04.96.cuij.011

    Cui J. , Zhou P. , Li Y. D. , et al. , 2016. Earthquake dynamic response analysis of seabed under the action of immersed tunnel. Earthquake Engineering and Engineering Dynamics, 36(4): 96—102. (in Chinese) doi: 10.13197/j.eeev.2016.04.96.cuij.011
    杜修力, 雷枝, 李亮等, 2015. 地震和波浪联合作用下自由场海水动水压力分析. 世界地震工程, 31(3): 1—9

    Du X. L. , Lei Z. , Li L. , et al. , 2015. Hydrodynamic pressures analysis of free field seawater under coaction of earthquake and wave. World Earthquake Engineering, 31(3): 1—9. (in Chinese)
    金宇航, 闫培雷, 郭恩栋等, 2022. 地震-台风耦合作用下近海导管架平台动力响应分析. 震灾防御技术, 17(1): 132—142

    Jin Y. H. , Yan P. L. , Guo E. D. , et al. , 2022. Dynamic response analysis of offshore jacket platform under the coupling action of the earthquake and Typhon. Technology for Earthquake Disaster Prevention, 17(1): 132—142. (in Chinese)
    罗刚, 张玉龙, 潘少康等, 2021. 波浪地震耦合作用下悬浮隧道动力响应分析. 工程力学, 38(2): 211—220, 231

    Luo G. , Zhang Y. L. , Pan S. K. , et al. , 2021. Dynamic response analysis of submerged floating tunnels to coupled wave-seismic action. Engineering Mechanics, 38(2): 211—220, 231. (in Chinese)
    闫维明, 谢志强, 张向东等, 2016. 隔舱式颗粒阻尼器在沉管隧道中的减震控制试验研究. 振动与冲击, 35(17): 7—12, 25

    Yan W. M. , Xie Z. Q. , Zhang X. D. , et al. , 2016. Tests for compartmental particle Damper's a seismic control in an immersed tunnel. Journal of Vibration and Shock, 35(17): 7—12, 25. (in Chinese)
    张如林, 楼梦麟, 2012. 基于达维坚科夫骨架曲线的软土非线性动力本构模型研究. 岩土力学, 33(9): 2588—2594

    Zhang R. L. , Lou M. L. , 2012. Study of nonlinear dynamic constitutive model of soft soils based on Davidenkov skeleton curve. Rock and Soil Mechanics, 33(9): 2588—2594. (in Chinese)
    赵丁凤, 阮滨, 陈国兴等, 2017. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证. 岩土工程学报, 39(5): 888—895

    Zhao D. F. , Ruan B. , Chen G. X. , et al. , 2017. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS. Chinese Journal of Geotechnical Engineering, 39(5): 888—895. (in Chinese)
    赵凯, 王秋哲, 王彦臻等, 2021. 可液化地基地下结构地震反应特征简化有效应力分析. 振动与冲击, 40(21): 39—46

    Zhao K. , Wang Q. Z. , Wang Y. Z. , et al. , 2021. Effects of soil-underground structure interaction on seismic response of liquefiable sit around underground structure. Journal of Vibration and Shock, 40(21): 39—46. (in Chinese)
    Chen G. X. , Ruan B. , Zhao K. , et al. , 2020 a. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions. Journal of Earthquake Engineering, 24(3): 351—380. doi: 10.1080/13632469.2018.1453416
    Chen G. X. , Wang Y. Z. , Zhao D. F. , et al. , 2021. A new effective stress method for nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6): 1595—1611.
    Chen W. Y. , Jeng D. , Chen W. , et al. , 2020 b. Seismic-induced dynamic responses in a poro-elastic seabed: Solutions of different formulations. Soil Dynamics and Earthquake Engineering, 131: 106021. doi: 10.1016/j.soildyn.2019.106021
    Cheng X. S. , Li G. L. , Chen J. , et al. , 2018. Seismic response of a submarine tunnel under the action of a sea wave. Marine Structures, 60: 122—135. doi: 10.1016/j.marstruc.2018.03.004
    Phillips C. , Hashash Y. M. A. , 2009. Damping formulation for nonlinear 1 D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7): 1143—1158. doi: 10.1016/j.soildyn.2009.01.004
    Sumer B. M., Ansal A., Cetin K. O., et al., 2007. Earthquake-induced liquefaction around marine structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(1): 55—82.
    Yu H. T. , Yuan Y. , Xu G. P. , et al. , 2018. Multi-point shaking table test for long tunnels subjected to non-uniform seismic loadings-part II: application to the HZM immersed tunnel. Soil Dynamics and Earthquake Engineering, 108: 187—195. doi: 10.1016/j.soildyn.2016.08.018
    Zhao K. , Xiong H. , Chen G. X. , et al. , 2018. Wave-induced dynamics of marine pipelines in liquefiable seabed. Coastal Engineering, 140: 100—113. doi: 10.1016/j.coastaleng.2018.06.007
    Zhao K. , Wang Q. Z. , Chen W. Y. , et al. , 2020. Uplift of immersed tunnel in liquefiable seabed under wave and current propagation. Engineering Geology, 278: 105828. doi: 10.1016/j.enggeo.2020.105828
    Zienkiewicz O. C. , Chang C. T. , Hinton E. , 1978. Non-Linear seismic response and liquefaction. International Journal for Numerical and Analytical Methods in Geomechanics, 2(4): 381—404. doi: 10.1002/nag.1610020407
  • 期刊类型引用(1)

    1. 马小平,林旭川,朱瑞,孙艳萍,陈文凯,张灿,赵怀群. 城市建筑物情景构建及地震风险评估——以玛曲县为例. 地震工程与工程振动. 2023(03): 46-55 . 百度学术

    其他类型引用(0)

  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  57
  • PDF下载量:  20
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-10-31
  • 刊出日期:  2023-03-31

目录

/

返回文章
返回