Study on Interaction of Sandy Seabed-immersed Tunnel under Combined Action of Earthquake and Wave
-
摘要: 对于埋置于海床表层的沉管隧道,波浪作用是不容忽视的常遇海洋环境因素。不同于陆域地下结构,海底沉管隧道地震反应分析和安全评价应考虑波浪的联合作用。基于Biot完全耦合的动力有效应力分析方法,对波浪与地震联合作用下砂质海床-隧道之间的动力相互作用特性进行研究。研究结果表明,相较仅有地震作用,波浪荷载加速了沉管隧道周围海床地震残余超孔压的增长和渐进液化进程,增大了沉管隧道上浮量;波浪与地震联合作用对应的β谱谱值更大,且卓越反应周期向长周期偏移;波浪对海床地震动的影响深度有限,仅对海床地表以下15 m范围内的地震动有放大效应。忽略波浪环境作用对砂质海床场地设计地震动参数的影响,对于沉管隧道抗震设计是偏于不安全的。Abstract: For immersed tunnels buried on the surface of the seabed, wave action is a common marine environmental factor that cannot be ignored. Different from the land underground structure, the seismic response analysis and safety evaluation of submarine immersed tunnels should consider the combined action of waves. Based on the Biot fully coupled dynamic effective stress analysis method, the dynamic interaction characteristics between sandy seabed and tunnel under the combined action of wave and earthquake are studied. The results show that the wave load accelerates the growth of the residual excess pore pressure and the progressive liquefaction process of the seabed around the immersed tunnel, and increases the floating amount of the immersed tunnel. The β spectrum value corresponding to the combined action of earthquake and wave is larger, and the predominant response period shifts to long period. However, the influence of waves on the seabed ground motion is limited in depth and only has amplification effect on the ground motion in the range of 15 m below the seabed surface. Ignoring the influence of wave environment on design ground motion parameters of sandy seabed site may be unsafe for seismic design of immersed tunnels.
-
表 1 土单元计算参数
Table 1. Calculation parameters of soil element
相对密度Dr/% Davidenkov模型 孔压模型 莫尔-库仑模型 A B γ0 C1 C2 C3 黏聚力c/kPa 内摩擦角ϕ /(°) 抗拉强度T/kPa 50 1.02 0.35 4.1×10−4 0.997 0.150 1.25 0 30 0 表 2 数值模型计算参数
Table 2. Calculation parameters of numerical model
相对密度Dr/% Davidenkov模型 孔压模型 莫尔-库仑模型 A B γ0 C1 C2 C3 黏聚力c/kPa 内摩擦角ϕ /(°) 抗拉强度T/kPa 50 1.03 0.4 3.9×10−4 0.43 0.93 1.25 0 30 0 -
陈国兴, 岳文泽, 阮滨等, 2021. 金塘海峡海床地震反应特征的二维非线性分析. 岩土工程学报, 43(11): 1967—1975Chen G. X. , Yue W. Z. , Ruan B. , et al. , 2021. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang strait. Chinese Journal of Geotechnical Engineering, 43(11): 1967—1975. (in Chinese) 崔杰, 周鹏, 李亚东等, 2016. 地震作用下海底沉管隧道的动力响应分析. 地震工程与工程振动, 36(4): 96—102 doi: 10.13197/j.eeev.2016.04.96.cuij.011Cui J. , Zhou P. , Li Y. D. , et al. , 2016. Earthquake dynamic response analysis of seabed under the action of immersed tunnel. Earthquake Engineering and Engineering Dynamics, 36(4): 96—102. (in Chinese) doi: 10.13197/j.eeev.2016.04.96.cuij.011 杜修力, 雷枝, 李亮等, 2015. 地震和波浪联合作用下自由场海水动水压力分析. 世界地震工程, 31(3): 1—9Du X. L. , Lei Z. , Li L. , et al. , 2015. Hydrodynamic pressures analysis of free field seawater under coaction of earthquake and wave. World Earthquake Engineering, 31(3): 1—9. (in Chinese) 金宇航, 闫培雷, 郭恩栋等, 2022. 地震-台风耦合作用下近海导管架平台动力响应分析. 震灾防御技术, 17(1): 132—142Jin Y. H. , Yan P. L. , Guo E. D. , et al. , 2022. Dynamic response analysis of offshore jacket platform under the coupling action of the earthquake and Typhon. Technology for Earthquake Disaster Prevention, 17(1): 132—142. (in Chinese) 罗刚, 张玉龙, 潘少康等, 2021. 波浪地震耦合作用下悬浮隧道动力响应分析. 工程力学, 38(2): 211—220, 231Luo G. , Zhang Y. L. , Pan S. K. , et al. , 2021. Dynamic response analysis of submerged floating tunnels to coupled wave-seismic action. Engineering Mechanics, 38(2): 211—220, 231. (in Chinese) 闫维明, 谢志强, 张向东等, 2016. 隔舱式颗粒阻尼器在沉管隧道中的减震控制试验研究. 振动与冲击, 35(17): 7—12, 25Yan W. M. , Xie Z. Q. , Zhang X. D. , et al. , 2016. Tests for compartmental particle Damper's a seismic control in an immersed tunnel. Journal of Vibration and Shock, 35(17): 7—12, 25. (in Chinese) 张如林, 楼梦麟, 2012. 基于达维坚科夫骨架曲线的软土非线性动力本构模型研究. 岩土力学, 33(9): 2588—2594Zhang R. L. , Lou M. L. , 2012. Study of nonlinear dynamic constitutive model of soft soils based on Davidenkov skeleton curve. Rock and Soil Mechanics, 33(9): 2588—2594. (in Chinese) 赵丁凤, 阮滨, 陈国兴等, 2017. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证. 岩土工程学报, 39(5): 888—895Zhao D. F. , Ruan B. , Chen G. X. , et al. , 2017. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS. Chinese Journal of Geotechnical Engineering, 39(5): 888—895. (in Chinese) 赵凯, 王秋哲, 王彦臻等, 2021. 可液化地基地下结构地震反应特征简化有效应力分析. 振动与冲击, 40(21): 39—46Zhao K. , Wang Q. Z. , Wang Y. Z. , et al. , 2021. Effects of soil-underground structure interaction on seismic response of liquefiable sit around underground structure. Journal of Vibration and Shock, 40(21): 39—46. (in Chinese) Chen G. X. , Ruan B. , Zhao K. , et al. , 2020 a. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions. Journal of Earthquake Engineering, 24(3): 351—380. doi: 10.1080/13632469.2018.1453416 Chen G. X. , Wang Y. Z. , Zhao D. F. , et al. , 2021. A new effective stress method for nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6): 1595—1611. Chen W. Y. , Jeng D. , Chen W. , et al. , 2020 b. Seismic-induced dynamic responses in a poro-elastic seabed: Solutions of different formulations. Soil Dynamics and Earthquake Engineering, 131: 106021. doi: 10.1016/j.soildyn.2019.106021 Cheng X. S. , Li G. L. , Chen J. , et al. , 2018. Seismic response of a submarine tunnel under the action of a sea wave. Marine Structures, 60: 122—135. doi: 10.1016/j.marstruc.2018.03.004 Phillips C. , Hashash Y. M. A. , 2009. Damping formulation for nonlinear 1 D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7): 1143—1158. doi: 10.1016/j.soildyn.2009.01.004 Sumer B. M., Ansal A., Cetin K. O., et al., 2007. Earthquake-induced liquefaction around marine structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(1): 55—82. Yu H. T. , Yuan Y. , Xu G. P. , et al. , 2018. Multi-point shaking table test for long tunnels subjected to non-uniform seismic loadings-part II: application to the HZM immersed tunnel. Soil Dynamics and Earthquake Engineering, 108: 187—195. doi: 10.1016/j.soildyn.2016.08.018 Zhao K. , Xiong H. , Chen G. X. , et al. , 2018. Wave-induced dynamics of marine pipelines in liquefiable seabed. Coastal Engineering, 140: 100—113. doi: 10.1016/j.coastaleng.2018.06.007 Zhao K. , Wang Q. Z. , Chen W. Y. , et al. , 2020. Uplift of immersed tunnel in liquefiable seabed under wave and current propagation. Engineering Geology, 278: 105828. doi: 10.1016/j.enggeo.2020.105828 Zienkiewicz O. C. , Chang C. T. , Hinton E. , 1978. Non-Linear seismic response and liquefaction. International Journal for Numerical and Analytical Methods in Geomechanics, 2(4): 381—404. doi: 10.1002/nag.1610020407