Seismic Performance Level and Evaluation Method of Composite Prefabricated Utility Tunnel
-
摘要: 叠合装配式综合管廊因其适用性强成为地下综合管廊建设的重要方向,但在管廊结构抗震分析研究中,缺乏对其抗震性能的合理评价指标。为此建立土-叠合装配式综合管廊有限元数值模型,探讨不同地震动频谱特性和峰值强度对叠合装配式综合管廊加速度响应、位移响应及地震损伤特性的影响,基于层间位移角限值、地震损伤程度及叠合面损伤程度之间的对应关系,提出在水平地震作用下叠合装配式管廊结构抗震性能水平划分,并对其进行物理特征描述,为基于抗震性能的叠合装配式综合管廊结构设计提供参考。Abstract: The composite prefabricated utility tunnel has become an important direction of underground utility tunnel construction because of its wide applicability, but there is a lack of reasonable evaluation indicators for its seismic performance in the seismic analysis of utility tunnel structures. A finite element numerical model of soil-composite prefabricated utility tunnel was established in this paper. Through inputting different PGAs and types of ground motion at the bedrock, the acceleration response, displacement response and seismic damage characteristics of the composite prefabricated utility tunnel were studied, and the seismic damage evolution process of the utility tunnel was revealed. Based on the relationship among story drift limit, the degree of seismic damage, and the degree of damage to the composite surface, the seismic performance level of the composite prefabricated utility tunnel under horizontal earthquake and the physical description of seismic damage are presented. which provides a reference for the performance based seismic design of the composite prefabricated utility tunnel structure.
-
Key words:
- Composite prefabricated /
- Utility tunnel /
- Composite surface /
- Seismic performance /
- Story drift /
- Damage level
-
引言
镇江地区历史上发生过多次中强震,地震预警系统的建设有一定意义,2015年12月镇江市地震预警系统建成并投入使用,该系统分为2个主要部分,即地震波接收台点(下文称烈度台点)、预警信号发出台点(下文称预警终端)。但该系统建成后,镇江地区未发生过中强震,有感地震震级也较小,仅在很小的范围产生影响,预警系统并没有产生一定作用,因此该系统使用方(目前主要是学校师生)对预警系统的实际应用效果并不了解,地震部门对预警终端的增补也缺少相应的依据。为了解决这些问题,本文根据镇江地区预警台点分布情况及地震动峰值加速度和地震烈度衰减关系,从理论上对该系统的预警效能进行分析,确定目前本市地震预警系统的布点合理性及不同地点布设的预警终端对本市地震的理论预警时间。
1. 地震预警系统
地震预警指地震发生后,对震中附近一定距离区域尚未感知到但即将有可能感知到地震的民众发布的警报。地震波从地震发生地(震源)传播到周边一定范围,根据距离远近需要几秒到几十秒,如果在地震发生地布设地震探测仪器,地震发生时仪器最先接收纵波,经过短暂时间,经计算机自动处理,估算出地震三要素,通过电磁波信号以比横波更快的速度(3×105km/s)发送给离震中一定范围外的民众,达到地震预警目的。
地震预警系统虽能发挥一些社会效用,但仍存在一些亟待解决的问题,主要包含技术层面与非技术层面的问题。技术层面主要为预警信号发出区离震中太近存在盲区,无法预警,而离太远发出的预警信号无实际意义。本文主要分析技术层面的问题,同时结合镇江地区地震背景和各台点建设情况,分析各预警终端有效预警时间。
地震预警时间计算方法可用下式表示(郭凯等,2016):
$$T_{\mathrm{war}}=\frac{S_{\mathrm{hyp}}}{v_{\mathrm{s}}}-\frac{S_{\mathrm{sta}}}{v_{\mathrm{p}}}-T_{\mathrm{dat}}-T_{\mathrm{cen}}-T_{\mathrm{iss}} $$ (1) 式中,Twar为地震预警时间,Shyp为震源与目标区域的距离,Ssta为震源到台站的距离(假设3个台触发阈值才发出预警信息),vs为S波波速,vP为P波波速,Tdat为预警系统计算所需P波数据时长,Tcen为数据传输到数据处理中心的时延和系统计算时间之和;Tiss为预警信息发布时间,震源视为点源。
纵波速度快,离台站最近,最先到达烈度台点,而破坏性较大的横波速度慢,离预警地区较远,较迟到达预警地区(图 1)。
当地震预警时间Twar>0时,预警有效;当Twar≤0时,预警无效,根据式(1)可以计算出预警盲区,在震中附近一定区域无法预警。
但如果距震中过远,地震波到达时造成的地震烈度等级较低,有的甚至无法为人所感知,这种预警无实际意义。
2. 镇江市及周边地区地震预警系统建设情况
目前,镇江地区共有烈度台点17个,预警终端8个。烈度台点装有烈度仪,仪器感知地震动时向数据处理中心发出地震动信号,但该台站并不对外发出预警信号,预警信号主要由预警终端发出,该终端配备2-3个60w的喇叭,当接收到预警信号时,通过喇叭向使用者发出报警。为便于维护和管理,烈度仪安装在各辖市区原有地震台、强震台、宏观观测点及各乡镇镇政府内。预警终端在各辖市区选择1-2所学校布设,测试使用。
3. 预警盲区与台点间距
假设需3个台点触发阈值,计算机自动处理并开始计算地震三要素,最好的情况是地震发生地点在3个台构成的三角形中心下方。因研究区域较小,将地表近似视为平面,假设台点间距相同,3个台点构成等边三角形,则:
$$S_{\mathrm{sta}}^{2}=h^{2}+\frac{1}{3} a_{0}^{2} $$ (2) 式中,a0为台点间距,h为震源深度。
根据式(1),当Twar≤0时无法预警,设Twar=0,则式(1)变为:
$$S_{\mathrm{hyp}}=v_{\mathrm{s}}\left(\frac{S_{\mathrm{sta}}}{v_{\mathrm{p}}}+T_{\mathrm{dat}}+T_{\mathrm{cen}}+T_{\mathrm{iss}}\right) $$ (3) 各参数可赋值为:Tdat=3s,Tcen=2s,Tiss=1s,vP=5.8km/s,vs=3.6km/s。
设震中距为Δepi,则:
$$\mathit{\Delta }_{\text {epi }}=\sqrt{S_{\text {hyp }}^{2}-h^{2}} $$ (4) 可计算出不同台网密度(台点间距)对应的预警盲区(震中距),计算结果如图 2所示。
计算得出台点间距达1km时,预警盲区为25.96km,随台点间距增大,盲区扩大。
根据镇江市烈度台点分布,台点间距近似用下式计算:
$$a_{0}=\frac{a_{12}+a_{22}+, \ldots, +a_{172}}{34} $$ (5) 其中,a12+a+2+, …, +a172为各台到最近2个台点的距离和。
台点间距离计算方法如下:
设两点经纬度分别为A(WA,JA)、B(WB,JB),根据大地坐标系与直角坐标系换算关系(孔祥元等,2001),A点直角坐标为:
$$\left\{\begin{array}{l} X_{\mathrm{A}}=\frac{a \cos W_{\mathrm{A}}}{W} \cos J_{\mathrm{A}} \\ Y_{\mathrm{A}}=\frac{a \cos W_{\mathrm{A}}}{W} \sin J_{\mathrm{A}} \\ Z_{\mathrm{A}}=\frac{b \sin W_{\mathrm{A}}}{V} \end{array}\right. $$ (6) B点直角坐标为:
$$\left\{\begin{array}{l} X_{\mathrm{B}}=\frac{a \cos W_{\mathrm{B}}}{W} \cos J_{\mathrm{B}} \\ Y_{\mathrm{B}}=\frac{a \cos W_{\mathrm{B}}}{W} \sin J_{\mathrm{B}} \\ Z_{\mathrm{B}}=\frac{b \sin W_{\mathrm{B}}}{V} \end{array}\right. $$ (7) 式中,a为椭圆长半轴,b为椭圆短半轴,W、V为含椭圆偏心率的辅助函数。
为简化计算,将地球考虑为正球体而非椭球体,W、V取值为1,式(1)、式(2)中a、b则为地球半径,因a、b仅参与弧度计算,可将a、b假设为1。
AB间弧长即地面AB两点间的球面距离△AB:
$${\mathit{\Delta }_{{\rm{AB}}}} = {\rm{R}}C = {\rm{R}} \times {\mathop{\rm acos}\nolimits} \left({\frac{{a_1^2 + b_1^2 - c_1^2}}{{2{a_1}{b_1}}}} \right) $$ (8) 式中,C为OA与OB直线间夹角(弧度),R为地球半径,a1为A点到球心的距离,b1为B点到球心的距离,c1为A、B点直线距离。
$$c_{1}^{2}=\left(X_{\mathrm{A}}-X_{\mathrm{B}}\right)^{2}+\left(Y_{\mathrm{A}}-Y_{\mathrm{B}}\right)^{2}+\left(Z_{\mathrm{A}}-Z_{\mathrm{B}}\right)^{2} $$ (9) 地球半径R取6371.004km。计算得出镇江市烈度台点平均台点间距a0为16.3km,预警盲区为28.4km,即预警系统对震中28.4km范围内的地区无法预警。如果台点间距缩至10km,盲区范围为震中27km范围内,盲区面积缩小10%,缩小范围较小。总体说来,镇江市烈度速报台站台点间距较合理。
4. 预警有效范围
当预警地区地震动峰值加速度或地震烈度达到一定程度时,认为地震预警有效果。根据《中国地震烈度表》(GB/T 17742-2008)(中华人民共和国国家质量监督检验检疫总局等,2009),地震动峰值加速度达22cm/s2或地震烈度达Ⅴ度时,室内绝大多数人有感,房屋颤动,不稳定器物摇动或翻倒,因东部沿海地区民众对地震关注度不高,容忍程度较低,地震烈度为Ⅴ度时预警已有一定意义。根据东部地区地震动峰值加速度(PGA)衰减关系(王国新等,2014)和中强地震活动区地震烈度衰减关系(卢建旗等,2009),可计算不同震级时地震动峰值加速度和地震烈度与震中距的关系如下:
$$\ln \left(Y_{1}\right)=5.304+1.7196 M_{S}-2.5903 \ln \left(L+2.789 \mathrm{e}^{0.451 M_{\mathrm{S}}}\right) $$ (10) $$\ln \left(Y_{2}\right)=2.726+1.3467 M_{S}-1.7636 \ln \left(L+1.046 \mathrm{e}^{0.451 M_{\mathrm{S}}}\right) $$ (11) $$I_{\mathrm{a}}=5.841+1.071 M_{S}-3.657 \log (L+15) $$ (12) $$I_{\mathrm{b}}=3.944+1.071 M_{S}-2.845 \log (L+7) $$ (13) 其中,Y1、Y2分别为长、短轴地震动峰值加速度,Ia、Ib分别为长、短轴地震烈度,MS为震级,L为震中距(km)。
发生MS5.0以下地震时,在前文所述的28.4km盲区外,地震烈度达不到Ⅴ度,地震动峰值加速度达不到22cm/s2,对预警来说意义不大。因此根据长轴公式(10)、(12)绘制MS5.0、MS5.5、MS6.0地震时地震动峰值加速度、地震烈度和震中距关系曲线图(图 3)。由图 3可知,震中距越大,地震动峰值加速度越小,地震烈度越小;当发生MS5.0地震时,震中距38km内地震动峰值加速度可达22cm/s2,震中距34km内地震烈度达Ⅴ度;当发生MS5.5地震时,震中距57km内地震动峰值加速度可达22cm/s2,震中距54km内地震烈度达Ⅴ度;当发生MS6.0地震时,震中距84km内地震动峰值加速度可达22cm/s2,震中距82km内地震烈度达Ⅴ度。因此,本预警系统对于MS5.0地震预警有效范围为34-38km,对于MS5.5地震预警有效范围为54-57km,对于MS6.0地震预警有效范围为82-84km。
5. 镇江市地震预警系统预警有效性分析
镇江市处于华北地震区长江下游-黄海地震带,属中强地震活动带。根据《中国历史强震目录(公元前23世纪-公元1911年)》(国家地震局震害防御司,1995)、《中国近代地震目录(公元1912年-1990年,MS≥4.7)》(中国地震局震害防御司,1999),镇江行政区域内共发生4次破坏性地震(MS≥4.7),分别为1630年2月4日江苏镇江句容$4 \frac{3}{4} $级地震、1872年7月24日江苏镇江西$4 \frac{3}{4}$级地震、1913年4月3日江苏镇江MS5.5地震、1930年1月3日江苏镇江MS5.5地震。因此,镇江地区存在发生MS5.0以上地震的背景。
根据1970年以来的中国台网地震目录,1970年至今,镇江市虽未发生过MS5.0以上地震,但在距镇江行政边界90km范围内,发生过2次MS5.0以上地震(1974年4月22日溧阳MS5.5地震、1979年7月9日溧阳MS6.0地震)、2次接近MS5.0地震(1979年7月11日溧阳MS4.7地震、2012年7月20日高邮MS4.9地震)。因此,在镇江及周边地区建设地震预警系统具有一定意义。
计算有意义的最大预警时间时,假设地震发生在距各预警终端最远的3个烈度台点中心点,计算步骤如下:
(1)根据各烈度台点经纬度得出每3个烈度台点中心点经纬度,再根据各预警终端经纬度求出各预警终端与各中心点的距离,可假设离各预警终端最远的中心点为震中,计算出震中与预警终端的震中距Δepi,根据震源深度h(本文取10km)计算出震源距Shyp;
(2)假设地震P波到达离其最近的第3个台站时开始进行数据处理,则根据震中经纬度(3个烈度台点中心点经纬度)和3个烈度台点经纬度,求得震中与烈度台点的距离,取其最大值,即为震中距Δsta,再根据震源深度h(本文取10km)计算出震源距Ssta;
(3)根据公式(1)计算出最大预警时间Tmax。
(4)引入前述预警有效范围,当地震发生时,如果Δepi超过该震级对应的最大预警有效范围ΔMS,则Δepi取值为该震级对应的最大预警有效范围ΔMS,Ssta可根据公式(2)取本市平均台点间距近似计算,再根据公式(1)计算出有意义的最大预警时间Tmea-MS。如果Δepi>ΔMS,则有意义的最大预警时间Tmea-MS=Tmax。
计算结果见表 1。
表 1 各地震预警终端有效预警时间Table 1. Effective earthquake early warning time of the earthquake early warning terminals预警终端 Δsta3/km Δepi/km Tmea-Ms5.0/s Tmea-Ms5.5/s Tmea-Ms6.0/s 镇江市地震台 17.3 49.2 2.5 4.5 4.5 镇江实验学校万科魅力之城分校 17.3 53.5 2.5 5.7 5.7 江滨实验小学 17.3 57.8 2.5 7.7 6.9 辛丰小学 17.3 55.8 2.5 6.3 6.3 丹阳华南实验学校 17.3 46.8 2.5 3.9 3.9 扬中市外国语小学 17.3 80.8 2.5 7.7 13.1 句容实验小学 16.0 61.8 2.5 7.7 8.1 镇江新区实验小学 17.3 68.7 2.5 7.7 9.8 根据计算结果,当镇江市发生MS5.0地震时,因各地震预警终端最远震中距在该震级预警有效范围外,因此计算得出的有效预警时间相同,即可提前0-2.5s预警本地地震烈度在Ⅴ度或地震动峰值加速度达22cm/s2的地震;当镇江市发生MS5.5地震时,4个预警终端最远震中距大于震级预警有效范围,可提前0-7.7s预警本地地震烈度在Ⅴ度或地震动峰值加速度达22cm/s2的地震,另外4个预警终端最多可提前3.9-6.3s预警本地地震烈度在Ⅴ度或地震动峰值加速度达22cm/s2的地震;当镇江市发生MS6.0地震时,各预警终端最远震中距均在该震级预警有效范围内,最多可提前3.9-13.1s预警本地烈度在Ⅴ度或地震动峰值加速度达22cm/s2的地震。
6. 结论
(1)根据三台触发最优结果为地震发生在三台中心点的原则,台点间距为1km时,预警盲区为25.96km,且预警盲区随台点间距的增大而增大。根据镇江市各烈度台点至最近的2个烈度台点的距离,计算得出镇江市地震烈度台点平均台点间距为16.3km,预警盲区为28.4km。
(2)根据地震动峰值加速度和地震烈度随震中距的衰减关系,计算得出发生不同震级地震时地震动峰值加速度和地震烈度与震中距的关系。为使当地地震预警具有一定意义,本文假设当地地震动峰值加速度达22cm/s2或地震烈度达Ⅴ度时预警有效,计算知:发生MS5.0以下地震时,在28.4km盲区外,地震烈度达不到Ⅴ度,地震动峰值加速度达不到22cm/s2,对预警来说意义不大;当发生MS5.0地震时,震中距38km内地震动峰值加速度能达22cm/s2,震中距34km地震内烈度达Ⅴ度;当发生MS5.5地震时,震中距57km内地震动峰值加速度能达22cm/s2,震中距54km内地震烈度达Ⅴ度;当发生MS6.0地震时,震中距84km内地震动峰值加速度能达22cm/s2,震中距82km内地震烈度达Ⅴ度。
(3)根据各烈度台点和预警终端经纬度,再引入预警有效范围,可计算得到发生不同震级地震时,不同地点预警终端最多可提前2.5-13.1s预警本地地震烈度为Ⅴ度或地震动峰值加速度达22cm/s2的地震。
-
表 1 场地土层分布及物理参数
Table 1. Soil layer distribution and physical parameters of the site
土层 名称 埋深/m 密度/(kg·m−3) 泊松比 弹性模量/MPa 黏聚力/kPa 内摩擦角/(°) 1 人工填土 2 1 800 0.350 20 10 10 2 砂质黏土 6 1 910 0.320 27 28 12 3 砂质粉土 5 2 000 0.300 55 22 30 4 粉质黏土 8 1 980 0.330 64 32 14 5 粉质粉土 9 2 020 0.300 87 29 25 6 卵石圆砾 15 2 120 0.278 168 0 31 表 2 叠合装配式综合管廊的抗震性能水平划分及物理描述
Table 2. Seismic performace level division of composite prefabricated utility tunnel
抗震水平 层间位移角限值 性能水平描述 基本完好 $ {\theta _{\max }} \leqslant \dfrac{{0.5}}{{1000}} $ 结构处于弹性工作阶段,在地震或震后结构完好无损,各构件未出现地震损伤,叠合面性能未受影响,结构无须修补,能够正常使用。 中轻微破坏 $ \dfrac{{0.5}}{{1000}} \leqslant {\theta _{\max }} \leqslant \dfrac{{1.2}}{{1000}} $ 结构处于弹塑性工作阶段,在地震或震后结构现浇主体各角部位置及大舱室顶、底板跨中位置出现轻微的地震损伤,叠合面性能较好,经简单修补能够正常使用。 中度破坏 $ \dfrac{{1.2}}{{1000}} \leqslant {\theta _{\max }} \leqslant \dfrac{{2.6}}{{1000}} $ 结构处于弹塑性工作阶段,震后可能发生破坏,结构预制侧墙出现损伤,叠合面损伤程度一般,并未脱开,结构经加固修补后可恢复正常使用功能。 严重破坏 $ \dfrac{{2.6}}{{1000}} \leqslant {\theta _{\max }} \leqslant \dfrac{{5.1}}{{1000}} $ 结构处于塑性工作阶段,震后发生严重破坏,管廊结构各角部位置可能出现混凝土剥落,结构主要丧失承载能力,叠合面损伤程度严重但并未脱开,钢筋露出,部分钢筋达到屈服强度,但仍有承载能力,结构并未坍塌。 完全破坏 $ \dfrac{{5.1}}{{1000}} \leqslant {\theta _{\max }} $ 结构完全破坏,叠合面损伤严重,完全脱开,在地震或震后结构构件均遭受严重破坏,完全丧失承载能力。 -
董正方, 王君杰, 姚毅超, 2014. 城市轨道交通矩形地下结构层间位移角研究. 地下空间与工程学报, 10(S2): 1848—1852Dong Z. F. , Wang J. J. , Yao Y. C. , 2014. Research on story drift angle of urban mass transit rectangular underground structures. Chinese Journal of Underground Space and Engineering, 10(S2): 1848—1852. (in Chinese) 杜修力, 蒋家卫, 许紫刚等, 2019. 浅埋矩形框架地铁车站结构抗震性能指标标定研究. 土木工程学报, 52(10): 111—119, 128 doi: 10.15951/j.tmgcxb.2019.10.009Du X. L. , Jiang J. W. , Xu Z. G. , et al. , 2019. Study on quantification of seismic performance index for rectangular frame subway station structure. China Civil Engineering Journal, 52(10): 111—119, 128. (in Chinese) doi: 10.15951/j.tmgcxb.2019.10.009 方自虎, 周海俊, 赖少颖等, 2014. 循环荷载下钢筋混凝土ABAQUS黏结滑移单元. 武汉大学学报(工学版), 47(4): 527—531Fang Z. H. , Zhou H. J. , Lai S. Y. , et al. , 2014. ABAQUS bond-slip element of reinforced concrete under cyclic loads. Engineering Journal of Wuhan University, 47(4): 527—531. (in Chinese) 谷音, 刘晶波, 杜义欣, 2007. 三维一致粘弹性人工边界及等效粘弹性边界单元. 工程力学, 24(12): 31—37 doi: 10.3969/j.issn.1000-4750.2007.12.006Gu Y. , Liu J. B. , Du Y. X. , 2007.3 D consistent viscous-spring artificial boundary and viscous-spring boundary element. Engineering Mechanics, 24(12): 31—37. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.006 谷音, 林炜超, 俞安华等, 2022. 新型装配叠合式综合管廊受力性能试验. 福州大学学报(自然科学版), 50(1): 126—131Gu Y. , Lin W. C. , Yu A. H. , et al. , 2022. Experiment of the mechanical performance of the new type assembly and composite pipe gallery. Journal of Fuzhou University (Natural Science Edition), 50(1): 126—131. (in Chinese) 郭亚然, 石文倩, 李双飞等, 2018. 静、动力分析中的一种初始地应力场平衡方法. 河北工业科技, 35(3): 191—196Guo Y. R. , Shi W. Q. , Li S. F. , et al. , 2018. A method of initial geo-stress equilibrium in static-dynamic analysis. Hebei Journal of Industrial Science and Technology, 35(3): 191—196. (in Chinese) 刘沛林, 2010. 装配式钢筋混凝土简支板梁桥铰缝受力性能研究. 北京: 清华大学.Liu P. L., 2010. Study on behaviors of hinge joints for fabricated reinforced concrete simply-supported plate girder bridges. Beijing: Tsinghua University. (in Chinese) 王国波, 谢伟平, 孙明等, 2011. 地下框架结构抗震性能评价方法的研究. 岩土工程学报, 33(4): 593—598Wang G. B. , Xie W. P. , Sun M. , et al. , 2011. Evaluation method for seismic behaviors of underground frame structures. Chinese Journal of Geotechnical Engineering, 33(4): 593—598. (in Chinese) 王建宁, 马国伟, 窦远明等, 2020. 异跨框架式地铁地下车站结构抗震性能水平与评价方法研究. 振动与冲击, 39(10): 92—100 doi: 10.13465/j.cnki.jvs.2020.10.012Wang J. N. , Ma G. W. , Dou Y. M. , et al. , 2020. Performance levels and evaluation method for seismic behaviors of a large-scale underground subway station with unequal-span frame. Journal of Vibration and Shock, 39(10): 92—100. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.10.012 王文晖, 2013. 地下结构实用抗震分析方法及性能指标研究. 北京: 清华大学.Wang W. H., 2013. Research on practical seismic analysis methods and performance index of underground structures. Beijing: Tsinghua University. (in Chinese) 杨靖, 云龙, 庄海洋等, 2020. 三层三跨框架式地铁地下车站结构抗震性能水平研究. 岩土工程学报, 42(12): 2240—2248Yang J. , Yun L. , Zhuang H. Y. , et al. , 2020. Seismic performance levels of frame-type subway underground station with three layers and three spans. Chinese Journal of Geotechnical Engineering, 42(12): 2240—2248. (in Chinese) 赵作周, 周剑, 侯建群等, 2017. 上下层插筋连接预制混凝土空心模剪力墙有限元分析. 工程力学, 34(1): 117—129 doi: 10.6052/j.issn.1000-4750.2015.05.0411Zhao Z. Z. , Zhou J. , Hou J. Q. , et al. , 2017. Finite element analysis of shear walls with precast concrete hollow moulds and splice rebar connection between the upper and lower floors. Engineering Mechanics, 34(1): 117—129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.0411 庄海洋, 任佳伟, 王瑞等, 2019. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究. 岩土工程学报, 41(1): 131—138Zhuang H. Y. , Ren J. W. , Wang R. , et al. , 2019. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans. Chinese Journal of Geotechnical Engineering, 41(1): 131—138. (in Chinese) Lubliner J. , Oliver J. , Oller S. , et al. , 1989. A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3): 299—326. doi: 10.1016/0020-7683(89)90050-4 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2018. GB/T 51336—2018 地下结构抗震设计标准. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation, 2018. GB/T 51336—2018 Standard for seismic design of underground structures. Beijing: China Architecture & Building Press. (in Chinese) -