Three-dimensional Nonlinear Seismic Response Characteristics of Utility Tunnel under Soft-weak Strata
-
摘要: 软弱地层综合管廊在强震作用下易发生破坏。考虑土体非线性及水的影响,以苏通GIL综合管廊工程为依托,采用三维线性梁单元模拟螺栓与钢筋,对地震动进行幅值标定,建立三维精细化有限元模型,并根据不同地震动输入方式及强度,从衬砌应力分布、张开量及结构损伤角度分析综合管廊非线性地震反应特性。研究结果表明,45°共轭方向与拱腰位置处管廊受力较大,横向、纵向地震动作用下,随着地震动强度的增加,应力增加明显;横向地震动输入对管廊环间张开量的影响较小,当地震动达到峰值附近时,张开量增长明显,并在一定范围内波动;横向地震动对管廊结构损伤的影响较大,峰值加速度达0.3 g时,管廊内部结构在两端连接处及中间支撑处连接点出现拉压变形。Abstract: Under the condition of soft-weak strata, the utility tunnel is prone to damage under strong earthquakes. Considering the influence of soil nonlinearity and water, three-dimensional linear beam elements are used to simulate bolts and steel bars, the amplitude of ground motion is calibrated, and a three-dimensional refined finite element model is established. The nonlinear seismic response characteristics of the utility tunnel are analyzed from the perspective of stress distribution, opening amount, and structural damage. The results show that from the stress distribution, it can be seen that the utility tunnel is subjected to greater stress in the 45° conjugate direction and the position of the arch waist. Under the action of two-way ground motion, the stress increases more obviously with the increase of the ground motion intensity. The lateral ground motion input has little effect on the opening amount between the utility tunnel. When the ground vibration is near the peak value, the opening amount increases significantly and fluctuates within a certain range. The lateral ground motion has a great influence on the damage of the tunnel structure. When the peak acceleration reaches 0.3 g, the inner structure of the utility tunnel has tensile and compressive deformation at the connection points of both ends and the connection point of the intermediate support.
-
Key words:
- Utility tunnel /
- Soft-weak strata /
- Nonlinear /
- Structural damage /
- Numerical modeling
-
表 1 土体参数
Table 1. Soil parameters
土层名称 最大动剪切
模量Gmax/kPa泊松比 参数A 参数B 参考剪应变γr 参数β 参考围压/kPa 参数C1 参数C2 门槛剪应变γth 参数m 参数n ④1粉质黏土混粉土层 58 644 0.4 1 0.4595 0.000 377 0.003 1 000 1.051 0.143 0.000 2 0.345 668.9 ④2粉土层 123 032 0.4 1 0.4595 0.000 508 0.003 1 000 0.921 0.163 0.000 2 0.345 668.9 ⑤1粉细砂层 176 400 0.4 1 0.4595 0.000 478 0.003 1 000 0.813 0.185 0.000 2 0.345 668.9 ⑤2细砂层 202 752 0.4 1 0.4595 0.000 541 0.003 1 000 0.813 0.185 0.000 2 0.345 668.9 ⑥1中粗砂层 219 978 0.4 1 0.4595 0.000 617 0.003 1 000 0.813 0.185 0.000 2 0.345 668.9 表 2 混凝土参数
Table 2. Concrete parameters
混凝土强度
等级密度/
(kg·m−3)泊松比 弹性模量/GPa 膨胀角/(°) 偏心率 双轴与单轴抗压
强度之比fb0/fc0屈服形态影响
参数K黏性系数 C30 2 300 0.2 30 30 0.1 1.16 0.667 0.000 5 C60 2 500 0.2 36 38 0.1 1.16 0.667 0.0005 表 3 钢筋与螺栓参数
Table 3. Rebar and bolt parameters
材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度/MPa HRB400钢筋 7 800 200 0.3 400 10.9级螺栓 7 800 200 0.3 900 -
韩俊艳, 王小强, 郭之科等, 2022. 纵向非一致激励下埋地管道的振动台试验研究. 岩石力学与工程学报, 41(6): 1256—1266 doi: 10.13722/j.cnki.jrme.2021.0515Han J. Y. , Wang X. Q. , Guo Z. K. , et al. , 2022. Shaking table test of buried pipelines under longitudinal non-uniform excitation. Chinese Journal of Rock Mechanics and Engineering, 41(6): 1256—1266. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0515 黄雨, 于淼, Bhattacharya S. , 2013.2011年日本东北地区太平洋近海地震地基液化灾害综述. 岩土工程学报, 35(5): 834—840Huang Y. , Yu M. , Bhattacharya S. , 2013. Review on liquefaction-induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan). Chinese Journal of Geotechnical Engineering, 35(5): 834—840. (in Chinese) 蒋录珍, 李杰, 陈隽, 2015. 非一致地震激励下综合管廊接头响应数值模拟. 世界地震工程, 31(2): 101—107Jiang L. Z. , Li J. , Chen J. , 2015. Numerical simulation of utility tunnel joint effects under non-uniform earthquake excitation. World Earthquake Engineering, 31(2): 101—107. (in Chinese) 钱七虎, 陈晓强, 2007. 国内外地下综合管线廊道发展的现状、问题及对策. 地下空间与工程学报, 3(2): 191—194 doi: 10.3969/j.issn.1673-0836.2007.02.001Qian Q. H. , Chen X. Q. , 2007. Situation, problems and countermeasures of utility tunnel’ development in China and abroad. Chinese Journal of Underground Space and Engineering, 3(2): 191—194. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.02.001 史晓军, 陈隽, 李杰, 2008, 地下综合管廊大型振动台模型试验研究. 地震工程与工程振动, 28(6): 116—123Shi X. J., Chen J., Li J., 2008. Shaking table test on underground utility tunnel. Earthquake Engineering and Engineering Dynamics, 28(6): 116—123. (in Chinese) 施有志, 华建兵, 阮建凑等, 2018. 地下综合管廊地震动力响应三维数值分析. 工程地质学报, 26(3): 785—793 doi: 10.13544/j.cnki.jeg.2017-163Shi Y. Z. , Hua J. B. , Ruan J. C. , et al. , 2018. Three dimensional numerical analysis of dynamic response of underground utility tunnels during earthquake. Journal of Engineering Geology, 26(3): 785—793. (in Chinese) doi: 10.13544/j.cnki.jeg.2017-163 汤鹏, 杨明, 庄海洋等, 2022. 越江电力地下综合管廊结构横向抗震性能研究. 防灾减灾工程学报, 42(3): 507—515 doi: 10.13409/j.cnki.jdpme.202006025Tang P. , Yang M. , Zhuang H. Y. , et al. , 2022. Lateral seismic performance of the utility tunnel crossing the Yangzi River. Journal of Disaster Prevention and Mitigation Engineering, 42(3): 507—515. (in Chinese) doi: 10.13409/j.cnki.jdpme.202006025 袁勇, 朱力, 禹海涛等, 2022. 综合管廊抗震分析研究进展综述. 隧道建设(中英文), 42(11): 1821—1831Yuan Y. , Zhu L. , Yu H. T. , et al. , 2022. Review on seismic analysis of utility tunnels. Tunnel Construction, 42(11): 1821—1831. (in Chinese) 仉文岗, 韩亮, 陈志雄等, 2020. 双仓综合管廊抗震性能模型试验研究. 岩土工程学报, 42(1): 100—108Zhang W. G. , Han L. , Chen Z. X. , et al. , 2020. Model tests on seismic performance of double-box underground utility tunnel. Chinese Journal of Geotechnical Engineering, 42(1): 100—108. (in Chinese) 中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese) 中华人民共和国住房和城乡建设部, 国家市场监督管理局, 2021. GB/T 51438—2021 盾构隧道工程设计标准. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation, 2021. GB/T 51438—2021 Standard for design of shield tunnel engineering. Beijing: China Architecture & Building Press. (in Chinese) Chen G. X. , Zhao D. F. , Chen W. Y. , et al. , 2019. Excess pore-water pressure generation in cyclic undrained testing. Journal of Geotechnical and Geoenvironmental Engineering, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057 Chen G. X. , Wang Y. Z. , Zhao D. F. , et al. , 2021. A new effective stress method for nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6): 1595—1611. Duan X. , Dong Q. , Ye W. J. , 2019. Experimental study on seismic performance of prefabricated utility tunnel. Advances in Civil Engineering, 2019: 8968260. Ruan B. , Zhao K. , Wang S. Y. , et al. , 2019. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China). Engineering Geology, 260: 105233. doi: 10.1016/j.enggeo.2019.105233 Wang H. F. , Lou M. L. , Zhang R. L. , 2017. Influence of presence of adjacent surface structure on seismic response of underground structure. Soil Dynamics and Earthquake Engineering, 100: 131—143. doi: 10.1016/j.soildyn.2017.05.031 Zhang J. H. , Yuan Y. , Yu H. T. , 2019. Shaking table tests on discrepant responses of shaft-tunnel junction in soft soil under transverse excitations. Soil Dynamics and Earthquake Engineering, 120: 345—359. doi: 10.1016/j.soildyn.2019.02.013