• ISSN 1673-5722
  • CN 11-5429/P

软弱地层综合管廊三维非线性地震反应特性研究

潘强 赵丁凤 曹泽伟 钱健 周正龙

潘强,赵丁凤,曹泽伟,钱健,周正龙,2023. 软弱地层综合管廊三维非线性地震反应特性研究. 震灾防御技术,18(1):44−52. doi:10.11899/zzfy20230106. doi: 10.11899/zzfy20230106
引用本文: 潘强,赵丁凤,曹泽伟,钱健,周正龙,2023. 软弱地层综合管廊三维非线性地震反应特性研究. 震灾防御技术,18(1):44−52. doi:10.11899/zzfy20230106. doi: 10.11899/zzfy20230106
Pan Qiang, Zhao Dingfeng, Cao Zewei, Qian Jian, Zhou Zhenglong. Three-dimensional Nonlinear Seismic Response Characteristics of Utility Tunnel under Soft-weak Strata[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 44-52. doi: 10.11899/zzfy20230106
Citation: Pan Qiang, Zhao Dingfeng, Cao Zewei, Qian Jian, Zhou Zhenglong. Three-dimensional Nonlinear Seismic Response Characteristics of Utility Tunnel under Soft-weak Strata[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 44-52. doi: 10.11899/zzfy20230106

软弱地层综合管廊三维非线性地震反应特性研究

doi: 10.11899/zzfy20230106
基金项目: 国家自然科学基金(52208349)
详细信息
    作者简介:

    潘强,男,生于 1990 年。工程师。主要从事地基处理与地震工程研究。E-mail:354992238@qq.com

    通讯作者:

    周正龙,男,生于 1988 年。博士,高级工程师。主要从事地震工程研究。E-mail:zhouzhen.glong@163.com

Three-dimensional Nonlinear Seismic Response Characteristics of Utility Tunnel under Soft-weak Strata

  • 摘要: 软弱地层综合管廊在强震作用下易发生破坏。考虑土体非线性及水的影响,以苏通GIL综合管廊工程为依托,采用三维线性梁单元模拟螺栓与钢筋,对地震动进行幅值标定,建立三维精细化有限元模型,并根据不同地震动输入方式及强度,从衬砌应力分布、张开量及结构损伤角度分析综合管廊非线性地震反应特性。研究结果表明,45°共轭方向与拱腰位置处管廊受力较大,横向、纵向地震动作用下,随着地震动强度的增加,应力增加明显;横向地震动输入对管廊环间张开量的影响较小,当地震动达到峰值附近时,张开量增长明显,并在一定范围内波动;横向地震动对管廊结构损伤的影响较大,峰值加速度达0.3 g时,管廊内部结构在两端连接处及中间支撑处连接点出现拉压变形。
  • 图  1  有限元模型

    Figure  1.  3D finite element model

    图  2  修正的Davidenkov模型剪应力-剪应变关系曲线

    Figure  2.  Shear stress-shear strain curve for the modified Davidenkov model

    图  3  输入地震动时程和傅里叶谱

    Figure  3.  Input time history of ground motion and Fourier spectrum

    图  4  管廊监测点布置

    Figure  4.  Utility tunnel monitoring points

    图  5  管廊横断面应力分布(Mises应力)

    Figure  5.  Utility tunnel cross-sectional stress distribution (Mises stress)

    图  6  管廊横断面内力分布

    Figure  6.  Internal force distribution in the cross section of the utility tunnel

    图  7  管片纵向环间张开量

    Figure  7.  The amount of opening between the longitudinal rings of the utility tunnel

    图  8  管廊环间张开量时程曲线

    Figure  8.  Time history curve of opening amount between utility tunnel rings

    图  9  管廊结构损伤因子云图

    Figure  9.  Damage factors of utility tunnel structure

    表  1  土体参数

    Table  1.   Soil parameters

    土层名称最大动剪切
    模量Gmax/kPa
    泊松比参数A参数B参考剪应变γr参数β参考围压/kPa参数C1参数C2门槛剪应变γth参数m参数n
    1粉质黏土混粉土层58 6440.410.45950.000 3770.0031 0001.0510.1430.000 20.345668.9
    2粉土层123 0320.410.45950.000 5080.0031 0000.9210.1630.000 20.345668.9
    1粉细砂层176 4000.410.45950.000 4780.0031 0000.8130.1850.000 20.345668.9
    2细砂层202 7520.410.45950.000 5410.0031 0000.8130.1850.000 20.345668.9
    1中粗砂层219 9780.410.45950.000 6170.0031 0000.8130.1850.000 20.345668.9
    下载: 导出CSV

    表  2  混凝土参数

    Table  2.   Concrete parameters

    混凝土强度
    等级
    密度/
    (kg·m−3
    泊松比弹性模量/GPa膨胀角/(°)偏心率双轴与单轴抗压
    强度之比fb0/fc0
    屈服形态影响
    参数K
    黏性系数
    C302 3000.230300.11.160.6670.000 5
    C602 5000.236380.11.160.6670.0005
    下载: 导出CSV

    表  3  钢筋与螺栓参数

    Table  3.   Rebar and bolt parameters

    材料密度/(kg·m−3弹性模量/GPa泊松比屈服强度/MPa
    HRB400钢筋7 8002000.3400
    10.9级螺栓7 8002000.3900
    下载: 导出CSV
  • 韩俊艳, 王小强, 郭之科等, 2022. 纵向非一致激励下埋地管道的振动台试验研究. 岩石力学与工程学报, 41(6): 1256—1266 doi: 10.13722/j.cnki.jrme.2021.0515

    Han J. Y. , Wang X. Q. , Guo Z. K. , et al. , 2022. Shaking table test of buried pipelines under longitudinal non-uniform excitation. Chinese Journal of Rock Mechanics and Engineering, 41(6): 1256—1266. (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0515
    黄雨, 于淼, Bhattacharya S. , 2013.2011年日本东北地区太平洋近海地震地基液化灾害综述. 岩土工程学报, 35(5): 834—840

    Huang Y. , Yu M. , Bhattacharya S. , 2013. Review on liquefaction-induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake (Japan). Chinese Journal of Geotechnical Engineering, 35(5): 834—840. (in Chinese)
    蒋录珍, 李杰, 陈隽, 2015. 非一致地震激励下综合管廊接头响应数值模拟. 世界地震工程, 31(2): 101—107

    Jiang L. Z. , Li J. , Chen J. , 2015. Numerical simulation of utility tunnel joint effects under non-uniform earthquake excitation. World Earthquake Engineering, 31(2): 101—107. (in Chinese)
    钱七虎, 陈晓强, 2007. 国内外地下综合管线廊道发展的现状、问题及对策. 地下空间与工程学报, 3(2): 191—194 doi: 10.3969/j.issn.1673-0836.2007.02.001

    Qian Q. H. , Chen X. Q. , 2007. Situation, problems and countermeasures of utility tunnel’ development in China and abroad. Chinese Journal of Underground Space and Engineering, 3(2): 191—194. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.02.001
    史晓军, 陈隽, 李杰, 2008, 地下综合管廊大型振动台模型试验研究. 地震工程与工程振动, 28(6): 116—123

    Shi X. J., Chen J., Li J., 2008. Shaking table test on underground utility tunnel. Earthquake Engineering and Engineering Dynamics, 28(6): 116—123. (in Chinese)
    施有志, 华建兵, 阮建凑等, 2018. 地下综合管廊地震动力响应三维数值分析. 工程地质学报, 26(3): 785—793 doi: 10.13544/j.cnki.jeg.2017-163

    Shi Y. Z. , Hua J. B. , Ruan J. C. , et al. , 2018. Three dimensional numerical analysis of dynamic response of underground utility tunnels during earthquake. Journal of Engineering Geology, 26(3): 785—793. (in Chinese) doi: 10.13544/j.cnki.jeg.2017-163
    汤鹏, 杨明, 庄海洋等, 2022. 越江电力地下综合管廊结构横向抗震性能研究. 防灾减灾工程学报, 42(3): 507—515 doi: 10.13409/j.cnki.jdpme.202006025

    Tang P. , Yang M. , Zhuang H. Y. , et al. , 2022. Lateral seismic performance of the utility tunnel crossing the Yangzi River. Journal of Disaster Prevention and Mitigation Engineering, 42(3): 507—515. (in Chinese) doi: 10.13409/j.cnki.jdpme.202006025
    袁勇, 朱力, 禹海涛等, 2022. 综合管廊抗震分析研究进展综述. 隧道建设(中英文), 42(11): 1821—1831

    Yuan Y. , Zhu L. , Yu H. T. , et al. , 2022. Review on seismic analysis of utility tunnels. Tunnel Construction, 42(11): 1821—1831. (in Chinese)
    仉文岗, 韩亮, 陈志雄等, 2020. 双仓综合管廊抗震性能模型试验研究. 岩土工程学报, 42(1): 100—108

    Zhang W. G. , Han L. , Chen Z. X. , et al. , 2020. Model tests on seismic performance of double-box underground utility tunnel. Chinese Journal of Geotechnical Engineering, 42(1): 100—108. (in Chinese)
    中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 国家市场监督管理局, 2021. GB/T 51438—2021 盾构隧道工程设计标准. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation, 2021. GB/T 51438—2021 Standard for design of shield tunnel engineering. Beijing: China Architecture & Building Press. (in Chinese)
    Chen G. X. , Zhao D. F. , Chen W. Y. , et al. , 2019. Excess pore-water pressure generation in cyclic undrained testing. Journal of Geotechnical and Geoenvironmental Engineering, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
    Chen G. X. , Wang Y. Z. , Zhao D. F. , et al. , 2021. A new effective stress method for nonlinear site response analyses. Earthquake Engineering & Structural Dynamics, 50(6): 1595—1611.
    Duan X. , Dong Q. , Ye W. J. , 2019. Experimental study on seismic performance of prefabricated utility tunnel. Advances in Civil Engineering, 2019: 8968260.
    Ruan B. , Zhao K. , Wang S. Y. , et al. , 2019. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China). Engineering Geology, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
    Wang H. F. , Lou M. L. , Zhang R. L. , 2017. Influence of presence of adjacent surface structure on seismic response of underground structure. Soil Dynamics and Earthquake Engineering, 100: 131—143. doi: 10.1016/j.soildyn.2017.05.031
    Zhang J. H. , Yuan Y. , Yu H. T. , 2019. Shaking table tests on discrepant responses of shaft-tunnel junction in soft soil under transverse excitations. Soil Dynamics and Earthquake Engineering, 120: 345—359. doi: 10.1016/j.soildyn.2019.02.013
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  43
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回