• ISSN 1673-5722
  • CN 11-5429/P

浅基岩场地条件下地下结构抗震分析简化方法计算精度研究

赵密 李铭博 高志懂 杜修力

赵密,李铭博,高志懂,杜修力,2023. 浅基岩场地条件下地下结构抗震分析简化方法计算精度研究. 震灾防御技术,18(1):13−19. doi:10.11899/zzfy20230102. doi: 10.11899/zzfy20230102
引用本文: 赵密,李铭博,高志懂,杜修力,2023. 浅基岩场地条件下地下结构抗震分析简化方法计算精度研究. 震灾防御技术,18(1):13−19. doi:10.11899/zzfy20230102. doi: 10.11899/zzfy20230102
Zhao Mi, Li Mingbo, Gao Zhidong, Du Xiuli. Study on the Accuracy of Simplified Method for Seismic Analysis of Underground Structures under the Condition of Shallow Bedrock Site[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 13-19. doi: 10.11899/zzfy20230102
Citation: Zhao Mi, Li Mingbo, Gao Zhidong, Du Xiuli. Study on the Accuracy of Simplified Method for Seismic Analysis of Underground Structures under the Condition of Shallow Bedrock Site[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 13-19. doi: 10.11899/zzfy20230102

浅基岩场地条件下地下结构抗震分析简化方法计算精度研究

doi: 10.11899/zzfy20230102
基金项目: 北京市自然科学基金杰出青年科学基金项目(JQ19029)
详细信息
    作者简介:

    赵密,男,生于1980年。博士,教授,博士生导师。主要从事土-结构相互作用研究。E-mail:zhaomi@bjut.edu.cn

Study on the Accuracy of Simplified Method for Seismic Analysis of Underground Structures under the Condition of Shallow Bedrock Site

  • 摘要: 为研究浅基岩场地条件下地下结构抗震分析简化方法计算精度,采用反应加速度法和反应谱法计算2层3跨和2层2跨矩形地铁车站结构在均质场地和浅基岩场地条件下的地震响应,将动力时程分析法结果作为参考解,对比分析反应加速度法和反应谱法在不同场地条件下的计算精度。研究结果表明,在均质场地条件下,反应加速度法最大误差约18%,反应谱法最大误差约9%;在浅基岩场地条件下,反应加速度法最大误差约33%,反应谱法最大误差约16%;反应谱法和反应加速度法在浅基岩场地条件下的计算精度均小于均质场地条件,且反应谱法计算精度受场地条件的影响较小。
  • 图  1  反应加速度法和反应谱法模型

    Figure  1.  Response acceleration method and response spectrum method model

    图  2  车站结构横断面 (单位:毫米)

    Figure  2.  Cross section of station structure (Unit: mm)

    图  3  二维有限元模型

    Figure  3.  Two dimensional finite element model

    图  4  土体阻尼比和动剪切模量比变化曲线

    Figure  4.  Damping ratio versus shear strain and dynamic shear modulus ratio versus shear strain curve of soil mass

    图  5  地震动加速度时程曲线

    Figure  5.  Acceleration time history curve of ground motion

    图  6  结构弯矩误差对比

    Figure  6.  Comparison diagram of structural bending moment error

    图  7  结构剪力误差对比

    Figure  7.  Comparison diagram of structural shear error

    表  1  土体参数

    Table  1.   Soil parameters

    工况序号土体类型剪切波速/
    (m·s−1
    重度/
    (kN·m−3
    泊松比
    均匀场地1粉质黏土10019.20.26
    2粉质黏土20019.20.26
    3粉质黏土30019.20.26
    4粉质黏土40019.20.26
    浅基岩场地1粉质黏土10019.20.26
    中风化砂岩50023.00.23
    2粉质黏土20019.20.26
    中风化砂岩50023.00.23
    3粉质黏土30019.20.26
    中风化砂岩50023.00.23
    4粉质黏土40019.20.26
    中风化砂岩50023.00.23
    下载: 导出CSV

    表  2  模态阻尼比

    Table  2.   Damping ratio mode

    结构类别场地土层工况1工况2工况3工况4
    结构1均质场地0.0760.0540.0350.040
    浅基岩场地0.0650.0200.0120.010
    结构2均质场地0.0760.0540.0350.040
    浅基岩场地0.0650.0200.0120.010
    下载: 导出CSV

    表  3  地震动等效土体参数

    Table  3.   Equivalent soil parameters of ground motion

    工况土体类别弹性模量/MPa阻尼系数α阻尼系数β
    均匀场地1粉质黏土48.40.6870.008
    2粉质黏土193.50.4380.004
    3粉质黏土435.50.3760.002
    4粉质黏土774.10.3120.001
    浅基岩场地1粉质黏土48.40.5620.009
    中风化砂岩1 414.50.3900.006
    2粉质黏土193.50.3990.004
    中风化砂岩1 414.50.4580.005
    3粉质黏土435.50.3690.003
    中风化砂岩1 414.50.4720.004
    4粉质黏土774.10.3080.002
    中风化砂岩1 414.50.4920.004
    下载: 导出CSV
  • 国家技术监督局, 中华人民共和国建设部, 1998. GB 50267—1997 核电厂抗震设计规范. 北京: 中国计划出版社.

    The State Bureau of Quality and Technical Supervision, Ministry of Construction of the People's Republic of China, 1998. GB 50267—1997 Code for seismic design of nuclear power plants. Beijing: China Planning Press. (in Chinese)
    季倩倩, 杨林德, 2001. 地下铁道震害与震后修复措施. 灾害学, 16(2): 31—36 doi: 10.3969/j.issn.1000-811X.2001.02.007

    Ji Q. Q. , Yang L. D. , 2001. Seismic damage and restoration measures of subway. Journal of Catastrophology, 16(2): 31—36. (in Chinese) doi: 10.3969/j.issn.1000-811X.2001.02.007
    上海市城市建设和交通委员会, 2009. DG/TJ 08-2064—2009 地下铁道建筑结构抗震设计规范. 上海: 上海市建筑建材业市场管理总站.
    陶连金, 冯锦华, 边金等, 2019. 拱形断面地下结构基于反应加速度法抗震分析. 见: 土木工程新材料、新技术及其工程应用交流会论文集(中册). 北京: 工业建筑杂志社, 68—71, 116.
    王璐, 2011. 地下建筑结构实用抗震分析方法研究. 重庆: 重庆大学.

    Wang L., 2011. Study on practical seismic analysis method for underground structures. Chongqing: Chongqing University. (in Chinese)
    王秀英, 刘维宁, 张弥, 2003. 地下结构震害类型及机理研究. 中国安全科学学报, 13(11): 55—58 doi: 10.3969/j.issn.1003-3033.2003.11.015

    Wang X. Y. , Liu W. N. , Zhang M. , 2003. Study on the categorization and mechanism of seismic damage of underground structures. China Safety Science Journal, 13(11): 55—58. (in Chinese) doi: 10.3969/j.issn.1003-3033.2003.11.015
    吴敏, 2018. 地下结构简化抗震设计方法在综合管廊中的对比研究. 中国市政工程, (4): 77—79, 84 doi: 10.3969/j.issn.1004-4655.2018.04.024

    Wu M. , 2018. Comparative study of simplified aseismic design method for underground structure in utility tunnel. China Municipal Engineering, 43(4): 77—79, 84. (in Chinese) doi: 10.3969/j.issn.1004-4655.2018.04.024
    杨亚勤, 张春进, 王国波, 2016. 反应加速度法在地下结构抗震分析中的应用. 路基工程, (3): 144—147 doi: 10.13379/j.issn.1003-8825.2016.03.30

    Yang Y. Q. , Zhang C. J. , Wang G. B. , 2016. Application of response acceleration method in seismic analysis of underground structures. Subgrade Engineering, 34(3): 144—147. (in Chinese) doi: 10.13379/j.issn.1003-8825.2016.03.30
    赵密, 李苗, 昝子卉等, 2021. 地下结构抗震分析反应谱法与现有简化方法对比. 同济大学学报(自然科学版), 49(6): 783—790

    Zhao M. , Li M. , Zan Z. H. , et al. , 2021. Comparison of response spectrum method with existing simplified method for seismic analysis of underground structure. Journal of Tongji University (Natural Science), 49(6): 783—790. (in Chinese)
    中华人民共和国住房和城乡建设部, 2014. GB 50909—2014 城市轨道交通结构抗震设计规范. 北京: 中国计划出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2014. GB 50909—2014 Code for seismic design of urban rail transit structures. Beijing: China Planning Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2018. GB/T 51336—2018 地下结构抗震设计标准. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration of Market Supervision and Administration of the People's Republic of China, 2018. GB/T 51336—2018 Standard for seismic design of underground structures. Beijing: China Architecture & Building Press. (in Chinese)
    周云, 汤统壁, 廖红伟, 2006. 城市地下空间防灾减灾回顾与展望. 地下空间与工程学报, 2(3): 467—474 doi: 10.3969/j.issn.1673-0836.2006.03.028

    Zhou Y. , Tang T. B. , Liao H. W. , 2006. Review and prospect of disaster prevention of urban underground space. Chinese Journal of Underground Space and Engineering, 2(3): 467—474. (in Chinese) doi: 10.3969/j.issn.1673-0836.2006.03.028
    An X. H. , Shawky A. A. , Maekawa K. , 1997. The collapse mechanism of a subway station during the Great Hanshin earthquake. Cement and Concrete Composites, 19(3): 241—257. doi: 10.1016/S0958-9465(97)00014-0
    Bhalla S. , Yang Y. W. , Zhao J. , et al. , 2005. Structural health monitoring of underground facilities–Technological issues and challenges. Tunnelling and Underground Space Technology, 20(5): 487—500. doi: 10.1016/j.tust.2005.03.003
    Gao Z. D. , Zhao M. , Du X. L. , et al. , 2021 a. A generalized response spectrum method for seismic response analysis of underground structure combined with viscous-spring artificial boundary. Soil Dynamics and Earthquake Engineering, 140: 106451. doi: 10.1016/j.soildyn.2020.106451
    Gao Z. D. , Zhao M. , Du X. L. , et al. , 2021 b. Seismic analysis of underground structures employing extended response spectrum method. Tunnelling and Underground Space Technology, 116: 104089. doi: 10.1016/j.tust.2021.104089
    Huo H. , Bobet A. , Fernández G. , et al. , 2005. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station. Journal of Geotechnical and Geoenvironmental Engineering, 131(12): 1522—1533. doi: 10.1061/(ASCE)1090-0241(2005)131:12(1522)
    Iida H. , Hiroto T. , Yoshida N. , et al. , 1996. Damage to Daikai subway station. Soils and Foundations, 36(Special): 283—300. doi: 10.3208/sandf.36.Special_283
    Ramazi H. , Jigheh H. S. , 2006. The Bam (Iran) earthquake of December 26, 2003: from an engineering and seismological point of view. Journal of Asian Earth Sciences, 27(5): 576—584. doi: 10.1016/j.jseaes.2005.05.009
    Scawthorn C. , Johnson G S. , 2000. Preliminary report: Kocaeli (Izmit) earthquake of 17 August 1999. Engineering Structures, 22(7): 727—745. doi: 10.1016/S0141-0296(99)00106-6
    Zhao M. , Gao Z. D. , Du X. L. , et al. , 2019. Response spectrum method for seismic soil-structure interaction analysis of underground structure. Bulletin of Earthquake Engineering, 17(9): 5339—5363. doi: 10.1007/s10518-019-00673-6
    Zhuang H. Y. , Hu Z. H. , Wang X. J. , et al. , 2015. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling. Bulletin of Earthquake Engineering, 13(12): 3645—3668. doi: 10.1007/s10518-015-9790-6
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  18
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回