• ISSN 1673-5722
  • CN 11-5429/P

1990—2015年中国沿海低地地震高危险性地区的人口暴露研究

冯思琦 吴清 沈鎏澄 王惠铎 温家洪

冯思琦,吴清,沈鎏澄,王惠铎,温家洪,2022. 1990—2015年中国沿海低地地震高危险性地区的人口暴露研究. 震灾防御技术,17(4):719−726. doi:10.11899/zzfy20220412. doi: 10.11899/zzfy20220412
引用本文: 冯思琦,吴清,沈鎏澄,王惠铎,温家洪,2022. 1990—2015年中国沿海低地地震高危险性地区的人口暴露研究. 震灾防御技术,17(4):719−726. doi:10.11899/zzfy20220412. doi: 10.11899/zzfy20220412
Feng Siqi, Wu Qing, Shen Liucheng, Wang Huiduo, Wen Jiahong. Population Expousure in the High Seismic Hazard AREA of Low-elevation Coastal Zone in China from 1990 to 2015[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 719-726. doi: 10.11899/zzfy20220412
Citation: Feng Siqi, Wu Qing, Shen Liucheng, Wang Huiduo, Wen Jiahong. Population Expousure in the High Seismic Hazard AREA of Low-elevation Coastal Zone in China from 1990 to 2015[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 719-726. doi: 10.11899/zzfy20220412

1990—2015年中国沿海低地地震高危险性地区的人口暴露研究

doi: 10.11899/zzfy20220412
基金项目: 国家重点研发计划(2017YFC1503001);国家自然科学基金(42171080);中国地震局重大政策理论与实践问题研究课题(CEAZY2019JZ10)
详细信息
    作者简介:

    冯思琦,女,生于1994年。硕士研究生。主要从事沿海灾害风险管理研究。E-mail:f19821824845@163.com

    通讯作者:

    温家洪,男,生于1966年。教授,博士生导师。主要从事气候变化与极端事件、自然灾害风险分析与管理研究。E-mail: jhwen@shnu.edu.cn

  • 2 https://go.climatecentral.org/coastaldem/
  • 3 http://www.worldpop.org

Population Expousure in the High Seismic Hazard AREA of Low-elevation Coastal Zone in China from 1990 to 2015

  • 摘要: 中国沿海低地人口稠密、经济发达,是包括地震在内的自然灾害频发地区。由于已有研究成果缺乏对地震灾害暴露和风险的研究,本文利用CoastalDEM、Worldpop人口和中国地震动参数区划等数据,分析1990—2015年中国沿海低地地震高危险性地区人口暴露时空变化特征。研究结果表明,中国沿海低地地震高危险性地区面积为15.1×104 km2,约占全国沿海低地总面积的70.6%;1990—2015年,沿海低地地震高危险性地区暴露人口不断增加,2015年暴露人口达16869万人,与此同时,城市人口快速增长,而农村人口大幅下降。
    1)  2 https://go.climatecentral.org/coastaldem/
    2)  3 http://www.worldpop.org
  • 图  1  中国沿海低地地震高危险性地区空间分布

    Figure  1.  Spatial distribution in the high seismic hazard area of low-elevation coastal zones in China

    图  2  1990—2015年中国沿海低地地震高危险性地区人口时间变化

    Figure  2.  Population changes in the high seismic hazard area of low-elevation coastal zones in China from 1990 to 2015

    图  3  中国沿海低地地震高危险性地区人口密度时空变化

    Figure  3.  Spatiotemporal changes of population density in the high seismic hazard area of low-elevation coastal zones in China

    表  1  地震动峰值加速度与地震烈度的对比

    Table  1.   Comparison table between peak acceleration of ground motion and seismic intensity

    地震烈度/度 地震动峰值加速度/g
    0.1、0.15
    0.2、0.3
    0.4
    下载: 导出CSV

    表  2  1990—2015年沿海低地地震高危险性地区不同烈度区的暴露人口

    Table  2.   Population exposed to different intensity zones in the high seismic hazard area of low-elevation coastal zones in China from 1990 to 2015

    时间/年 烈度区 暴露人口/万人 占比/% 人口密度/(人·km−2
    1990 Ⅶ度区 8 838 84.2 698
    Ⅷ度区 1 641 15.6 868
    Ⅸ度区 20.8 0.2 42
    2000 Ⅶ度区 10 990 83.4 867
    Ⅷ度区 2 138 16.2 1 131
    Ⅸ度区 47.3 0.4 95
    2010 Ⅶ度区 13 543 84.7 1 069
    Ⅷ度区 2 406 15.0 1 273
    Ⅸ度区 47.3 0.3 95
    2015 Ⅶ度区 14 265 84.6 1 126
    Ⅷ度区 2 557 15.2 1 353
    Ⅸ度区 46.5 0.3 93
    下载: 导出CSV

    表  3  1990—2015年中国沿海低地地震高危险性地区不同烈度区的城乡人口变化

    Table  3.   Urban and rural population changes in different intensity zones of the high seismic hazard area in low-elevation coastal zones, China from 1990 to 2015

    烈度区 总人口变化量/万人 城市人口变化量/万人 农村人口变化量/万人
    Ⅶ度区 5 427(增幅61.4%) 8 143(增幅568%) −2 716(减幅36.7%)
    Ⅷ度区 916(增幅55.8%) 1 320(增幅259.8%) −404(减幅35.7%)
    Ⅸ度区 25.7(增幅124.2%) 29.2(增幅695.2%) −3.5(减幅20.7%)
    下载: 导出CSV
  • 段光贤, 曲则生, 余安东, 1980. 1979年溧阳6级地震震害调查. 上海地质, (1): 70—82.
    高战武, 缑亚森, 钟慧等, 2021. 中国东部海域断裂构造格架与地震活动研究. 震灾防御技术, 16(1): 11—18 doi: 10.11899/zzfy20210102

    Gao Z. W. , Gou Y. S. , Zhong H. , et al. , 2021. Fault structure frame and seismicity in the sea on the EastSide of Chinese mainland. Technology for Earthquake Disaster Prevention, 16(1): 11—18. (in Chinese) doi: 10.11899/zzfy20210102
    李巧萍, 赵敏, 2020. 《中国地震动参数区划图》施行4周年. 防灾博览, (3): 19—21. doi: 10.3969/j.issn.1671-6310.2020.03.005
    李小军, 李娜, 陈苏, 2021. 中国海域地震区划及关键问题研究. 震灾防御技术, 16(1): 1—10 doi: 10.11899/zzfy20210101

    Li X. J. , Li N. , Chen S. , 2021. Study on seismic zoning in China sea area and its key issues. Technology for Earthquake Disaster Prevention, 16(1): 1—10. (in Chinese) doi: 10.11899/zzfy20210101
    梁亚婷, 温家洪, 杜士强等, 2015. 人口的时空分布模拟及其在灾害与风险管理中的应用. 灾害学, 30(4): 220—228

    Liang Y. T. , Wen J. H. , Du S. Q. , et al. , 2015. Spatial-temporal distribution modeling of population and its applications in disaster and risk management. Journal of Catastrophology, 30(4): 220—228. (in Chinese)
    刘光鼎, 1992. 中国海地球物理场和地球动力学特征. 地质学报, 66(4): 300—314

    Liu G. D. , 1992. Features of geophysical fields and geodynamics of the sea areas of China. Acta Geologica Sinica, 66(4): 300—314. (in Chinese)
    潘建雄, 黄日恒, 1994.1918年南澳地震的破坏强度及震中位置. 华南地震, 14(2): 17—23

    Pan J. X. , Huang R. H. , 1994. To discuss the damage intensity and the epicentral location of nanao earthquake in 1918. South China Journal of Seismology, 14(2): 17—23. (in Chinese)
    潘顺, 杜士强, 徐慧等, 2016. 长三角地区沿海低地及其人口的时空变化分析. 地域研究与开发, 35(4): 161—165 doi: 10.3969/j.issn.1003-2363.2016.04.030

    Pan S. , Du S. Q. , Xu H. , et al. , 2016. Spatio-Temporal analysis on low-elevation low-elevation coastal zone and its population in the Yangtze River Delta Region. Areal Research and Development, 35(4): 161—165. (in Chinese) doi: 10.3969/j.issn.1003-2363.2016.04.030
    彭艳菊, 孟小红, 吕悦军等, 2008. 我国近海地震活动特征及其与地球物理场的关系. 地球物理学进展, 23(5): 1377—1388

    Peng Y. J. , Meng X. H. , Lü Y. J. , et al. , 2008. The seismicity of China offshore seas and its relationship with geophysical fields. Progress in Geophysics, 23(5): 1377—1388. (in Chinese)
    温家洪, 袁穗萍, 李大力等, 2018. 海平面上升及其风险管理. 地球科学进展, 33(4): 350—360

    Wen J. H. , Yuan S. P. , Li D. L. , et al. , 2018. Sea level rise and its risk management. Advances in Earth Science, 33(4): 350—360. (in Chinese)
    谢卓娟, 李山有, 吕悦军等, 2020. 中国海域及邻区统一地震目录及其完整性分析. 地震地质, 42(4): 993—1019 doi: 10.3969/j.issn.0253-4967.2020.04.015

    Xie Z. J. , Li S. Y. , Lü Y. J. , et al. , 2020. Unified earthquake catalog for China's seas and adjacent regions and its completeness analysis. Seismology and Geology, 42(4): 993—1019. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.04.015
    赵琳, 韩群, 孙俊仁, 1990. 江苏常熟-太仓5.1级地震经济损失分析. 国际地震动态, (7): 6—10

    Zhao L. , Han Q. , Sun J. R. , 1990. Analysis of economic losses caused by the Changshu-Taicang earthquake of M5.1 in Jiangsu Province. Progress in Earthquake Sciences, (7): 6—10. (in Chinese)
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese)
    Brown S., Nicholls R. J., Woodroffe C. D., et al., 2013. Sea-level rise impacts and responses: a global perspective. In: Finkl C. W., ed., Coastal Hazards. Dordrecht: Springer, 117—149.
    Dou Y. Y. , Huang Q. X. , He C. Y. , et al. , 2018. Rapid population growth throughout Asia’s earthquake-prone areas: a multiscale analysis. International Journal of Environmental Research and Public Health, 15(9): 1893. doi: 10.3390/ijerph15091893
    Edmonds D. A. , Caldwell R. L. , Brondizio E. S. , et al. , 2020. Coastal flooding will disproportionately impact people on river deltas. Nature Communications, 11(1): 4741. doi: 10.1038/s41467-020-18531-4
    Fang Y. Q. , Du S. Q. , Scussolini P. , et al. , 2018. Rapid population growth in Chinese floodplains from 1990 to 2015. International Journal of Environmental Research and Public Health, 15(8): 1602. doi: 10.3390/ijerph15081602
    Freire S. , Aubrecht C. , 2012. Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11): 3533—3543. doi: 10.5194/nhess-12-3533-2012
    He C. Y. , Huang Q. X. , Dou Y. Y. , et al. , 2016. The population in China's earthquake-prone areas has increased by over 32 million along with rapid urbanization. Environmental Research Letters, 11(7): 074028. doi: 10.1088/1748-9326/11/7/074028
    He C. Y. , Huang Q. X. , Bai X. M. , et al. , 2021. A global analysis of the relationship between urbanization and fatalities in earthquake-prone areas. International Journal of Disaster Risk Science, 12(6): 805—820. doi: 10.1007/s13753-021-00385-z
    Huang Q. X. , Meng S. T. , He C. Y. , et al. , 2019. Rapid urban land expansion in earthquake-prone areas of China. International Journal of Disaster Risk Science, 10(1): 43—56. doi: 10.1007/s13753-018-0207-4
    Kulp S. A. , Strauss B. H. , 2018. CoastalDEM: a global coastal digital elevation model improved from SRTM using a neural network. Remote Sensing of Environment, 206: 231—239. doi: 10.1016/j.rse.2017.12.026
    Lang C. , Gao M. T. , Wu G. C. , et al. , 2019. The concentration of population and GDP in high earthquake risk regions in China: temporal–spatial distributions and regional comparisons from 2000 to 2010. Pure and Applied Geophysics, 176(10): 4161—4175. doi: 10.1007/s00024-019-02126-2
    Li Y. X. , Gong P. , Zhou Y. Y. , et al. , 2020. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters, 15(9): 094044. doi: 10.1088/1748-9326/ab9be3
    Lichter M. , Vafeidis A. T. , Nicholls R. J. , et al. , 2011. Exploring data-related uncertainties in analyses of land area and population in the “low-elevation coastal zone” (LECZ). Journal of Coastal Research, 27(4): 757—768.
    Liu J. L. , Wen J. H. , Huang Y. Q. , et al. , 2015. Human settlement and regional development in the context of climate change: a spatial analysis of low-elevation low-elevation coastal zones in China. Mitigation and Adaptation Strategies for Global Change, 20(4): 527—546. doi: 10.1007/s11027-013-9506-7
    Lv Y. M. , Li W. J. , Wen J. H. , et al. , 2021. Population pattern and exposure under sea level rise: low-elevation low-elevation coastal zone in the Yangtze River Delta, 1990-2100. Climate Risk Management, 33: 100348. doi: 10.1016/j.crm.2021.100348
    McGranahan G. , Balk D. , Anderson B. , 2007. The rising tide: assessing the risks of climate change and human settlements in low-elevation low-elevation coastal zones. Environment and Urbanization, 19(1): 17—37. doi: 10.1177/0956247807076960
    Micheal O., Glavovic B., Hinkel J., et al., 2019. Sea level rise and implications for low lying islands, coasts and communities. In: IPCC, ed., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press.
    Neumann B. , Vafeidis A. T. , Zimmermann J. , et al. , 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One, 10(3): e0118571. doi: 10.1371/journal.pone.0118571
    Nicholls R. J. , Cazenave A. , 2010. Sea-level rise and its impact on coastal zones. Science, 328(5985): 1517-1520. doi: 10.1126/science.1185782
    Pesaresi M., Ehrlich D., Kemper T., et al., 2017. Atlas of the human planet 2017: global exposure to natural hazards. EUR 28556 EN. Luxembourg: Publications Office of the European Union.
    Poljanšek K., Ferrer M. M., De Groeve T., et al., 2017. Science for disaster risk management 2017: knowing better and losing less. Luxembourg: Publications Office of the European Union.
    Shi P. J. , 2016. Natural disasters in China. Berlin, Heidelberg: Springer.
    Stevens F. R. , Gaughan A. E. , Linard C. , et al. , 2015. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLoS One, 10(2): e0107042. doi: 10.1371/journal.pone.0107042
    UNISDR, 2015. Making development sustainable: the future of disaster risk management. global assessment report on disaster risk reduction. Geneva, Switzerland: United Nations Office for Disaster Risk Reduction (UNISDR).
    Vafeidis A., Neumann B., Zimmerman J., et al., 2011. MR9: analysis of land area and population in the low-elevation coastal zone (LECZ). London: Government Office for Science.
    Yang X. C. , Yao C. M. , Chen Q. , et al. , 2019. Improved estimates of population exposure in Low-Elevation Coastal Zones of China. International Journal of Environmental Research and Public Health, 16(20): 4012. doi: 10.3390/ijerph16204012
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  19
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回