• ISSN 1673-5722
  • CN 11-5429/P

吉林龙岗火山区形变特征与隆升机理分析

胡亚轩 赵凌强 张文婷 梁国经 綦伟

王佳龙, 王家庆, 邹颖, 孙嘉祥, 马庆尊. 2017年全球活动火山时空分布以及阿贡火山喷发前后的形变特征[J]. 震灾防御技术, 2019, 14(2): 423-430. doi: 10.11899/zzfy20190215
引用本文: 胡亚轩,赵凌强,张文婷,梁国经,綦伟,2022. 吉林龙岗火山区形变特征与隆升机理分析. 震灾防御技术,17(4):710−718. doi:10.11899/zzfy20220411. doi: 10.11899/zzfy20220411
Wang Jialong, Wang Jiaqing, Zou Ying, Sun Jiaxiang, Ma Qingzun. The Temporal and Spatial Distribution of Global Volcanism and the Deformation Characteristics Before and After Eruption of Mount Agung in 2017[J]. Technology for Earthquake Disaster Prevention, 2019, 14(2): 423-430. doi: 10.11899/zzfy20190215
Citation: Hu Yaxuan, Zhao Lingqiang, Zhang Wenting, Liang Guojing, Qi Wei. Analysis of Deformation Characteristic and Uplift Mechanism in Longgang Volcanoes, Jilin[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 710-718. doi: 10.11899/zzfy20220411

吉林龙岗火山区形变特征与隆升机理分析

doi: 10.11899/zzfy20220411
基金项目: 国家自然科学基金(41972315);吉林长白山火山国家野外科学观测研究站研究课题(NORSCBS20-06)
详细信息
    作者简介:

    胡亚轩,女,生于1970年。正高级工程师。主要从事地形变机理研究。E-mail:happy_hu6921@sina.com

Analysis of Deformation Characteristic and Uplift Mechanism in Longgang Volcanoes, Jilin

  • 摘要: 吉林龙岗火山区是第四纪活动火山,具有潜在喷发危险。通过GNSS和水准资料分析区域三维地壳运动,得出2011—2019年相对欧亚板块水平运动以东南向为主,速度<10 mm/a。敦化-密山断裂以东受日本2011年“3·11地震”影响强烈,现以拉张运动为主;近年来水准资料揭示火山区垂直运动以隆升为主。2014—2019年的InSAR资料显示隆升集中在靖宇一带。结合MT剖面反演得到的深部电性结构,龙岗火山区西侧高阻体分布在深度18 km以上,金龙顶子火山下方最浅。中部为早期喷发形成的火山,下方高阻体分布在深度40 km以上,东侧抚松一带分布在深度约20 km以上,地壳范围内的高阻结构表明岩浆已固结。高阻结构层可分辨出断层两侧电阻的差异性。高阻体下方存在大规模低阻结构,推测为中下地壳岩浆系统。金龙顶子火山深度10 km以下的低阻结构可能为岩浆通道,并与中下地壳岩浆系统相连。东侧区域岩浆平均深度约30 km,相对较浅。龙岗火山区幔源物质的上涌及间断性的向上运移引起地壳隆升及地震活动。
  • 地质学家已经确定全球范围的全新世火山约有1500多座(许建东,2011)。火山类型主要为成层火山、复合式火山、熔岩锥、破火山口、盾状火山等(刘若新等,1999)。此外,还有众多火山位于深海海底,它们的喷发很少能到达水面,因此少有观察和记录。大部分火山的形成是板块运动的结果,是地球动力学过程的重要现象(Press等,1982)。全球现今活动构造划分为环太平洋、大洋中脊和大陆三大构造系统(马宗晋等,2003)。全球火山活动分西太平洋火山活动区、东太平洋火山活动区以及大西洋火山活动区(洪汉净等, 2003, 2009)。位于太平洋板块西南缘的印度尼西亚、菲律宾和日本等国家,拥有的火山数量为全球正在活动火山数量的1/3(Siebert等,2010),2017年该区域活动强度最大的火山为印度尼西亚巴厘岛的阿贡火山(王佳龙等,2018a)。

    本文数据主要来自全球火山计划网站2,该网站由华盛顿国家自然历史博物馆矿物科学部门(Department of Mineral Sciences,National Museum of Natural History,Washington D.C)的史密森全球火山项目(Smithsonian Institution Global Volcanism Program)支撑,汇集了世界各地活动火山监测机构的监测信息及相应的火山监测网站链接,并于每周四发布监测周报。文中的活动火山指2016年12月30日—2017年12月31日发生活动并被该网站记录下来的火山。

    2 http://volcano.si.edu/reports_weekly.cfm

    通过整理该网站2017年发布的约858条全球火山监测活动信息,总结2017年度全球火山活动的时空关系,并针对阿贡火山的喷发过程进行了追踪,为监测火山喷发、研究火山活动机理、预测火山灾害等提供参考。

    火山警戒等级是衡量火山活动危险程度的标识,USGS火山灾害项目1将火山预警等级划分为正常(Ⅰ级)、咨询(Ⅱ级)、注意(Ⅲ级)和警戒(Ⅳ级)4个等级,其代表的危险程度依次上升,火山活动越强烈,引发的火山灾害也越严重。具体划分标准为:Ⅰ级,火山警戒级别为正常,航空颜色代码为绿色,火山有活动迹象,但活动处于正常范围内,主要表现为火山喷气及火山灰柱飘散;Ⅱ级,火山警戒级别为低度警戒,航空颜色代码为黄色,火山活动信号上升,高于正常范围,主要表现为火山出现热异常,火山喷气柱升高,出现火山爆炸声,火山由正常活动向危险活动过渡,该类型火山一般不稳定;Ⅲ级,火山警戒级别为中度警戒,航空颜色代码为橙色,火山活动信号进一步上升,具有喷发的前兆,主要表现为火山地震频率和强度增大,可以监测到熔岩流溢出,热异常和火山灰柱活动都有所加强;Ⅳ级,火山警戒级别为高度警戒,航空颜色代码为红色,表现为火山即将喷发或正在喷发。一般情况下,火山的警戒等级随火山活动的强弱而改变,可能会在数月内出现连续变化(张传杰等,2016)。

    1 https://volcanoes.usgs.gov/vhp/about_alerts.html

    全球活动火山约有80%分布在环太平洋地区(Siebert等,2010)。2017年度的活动火山约有90%分布在环太平洋地区,其中,太平洋北部阿留申群岛、堪察加半岛和北方四岛等分布12座活动火山,其警戒等级为Ⅱ级和Ⅲ级,警戒等级Ⅲ级的活动火山相对比较活跃;位于太平洋板块西缘的日本岛弧和东部海岛分布11座活动火山,警戒等级为Ⅰ级的火山相对比较活跃;位于澳大利亚板块北缘的印度尼西亚等一系列岛链,由澳大利亚板块向北俯冲到缅甸板块、欧亚板块和太平洋板块之下形成,构造复杂,火山活动能量大,2017年此区域有21座活动火山,包括3座警戒等级Ⅲ级的活动火山,可见其活动频度和强度都极高。

    全球火山分布图(图 1)的底图来源于USGS,对其做罗宾逊投影变换,中央子午线设为155.0°E。若某火山2017年每周均有持续活动,则将该火山的活动频率设为1;若火山全年无任何活动,则将火山的活动频率设为0。火山的活动频率一般介于0和1之间,它反映了火山的活跃程度。

    图 1  全球活动火山分布
    Figure 1.  Distribution of active volcanoes in 2017

    2017年全球范围内,平均每月约有30座火山喷发的记录,最多达34座,最少为26座(图 2)。年度内火山活动数量和活动强度有逐渐增多、增强的趋势,表明俯冲板块活动的加剧。可将活动的火山分为3种类型(图 3):①“冒泡”型,一般活动强度较弱,持续时间较短,警戒等级一般为Ⅰ级或Ⅱ级,活动形式主要表现为火山喷气、火山震颤、火山地震等,通常不会造成地质灾害和影响周围居民的生活,典型代表有冰岛的卡特拉火山(Katla)、美国的希沙尔丁火山(Shishaldin)、印度尼西亚的赛梅鲁火山(Semeru)和俄罗斯的朱帕诺夫斯基火山(Zhupanovsky)等;②“持续”型,基本常年处于持续喷发状态,警戒等级一般为Ⅱ级或Ⅲ级,活动形式主要表现为火山喷气、火山地震、岩浆活动、火山碎屑流等,这类火山是全球火山监测的重点,对其进行的火山喷发监测和火山灾害预防都较为成熟,典型代表有美国夏威夷的基拉韦厄火山(Kilauea)(Fontijn等,2015王佳龙,2018b)、印度尼西亚的锡纳朋火山(Sinabung)、秘鲁的萨班卡亚火山(Sabancaya)和俄罗斯勘察加半岛的希韦卢奇火山(Sheveluch),这几座火山几乎常年都在活动,火山区周围常引发地质灾害;③“剧烈”型,常年处于稳定状态,偶尔几周或几个月突然爆发,警戒等级一般为Ⅲ级或Ⅳ级,喷发的形式主要表现为喷发柱的突然上升,有时高达几千米至十几千米,随后火山碎屑物质喷出火口并造成坍塌,引发火山碎屑流,最后岩浆溢出形成熔岩流,典型代表有日本的新燃岳火山(Kirishimayama)、菲律宾的马荣火山(Mayon)以及印度尼西亚的阿贡火山(Agung)(王佳龙,2018a)。

    图 2  2017年度全球火山喷发数量2017年度全球火山喷发数量
    Figure 2.  The number of worldwide volcanic eruptions in 2017
    图 3  活动火山分类
    Figure 3.  Classification of active volcano

    全球的活火山主要分布在环太平洋地区,此区域也是著名的“火环”,而印度尼西亚岛链是西南太平洋最为活跃的1条“火链”(图 4,图中火山名称下方数字,如2003/46/2代表的含义为2003年第1次监测到该火山的活动,目前共计活动了46周,2017年度从2月开始变活跃),其居民数量为世界之最,阿贡火山则是该“火链”中最为活跃的火山之一(Self等1996)。阿贡火山的喷发周期约50年,最近1次喷发于1963年(Zen等1964Marinelli等,1968),距今56年。据印尼国家灾害管理局1(Badan Nasional Penanggulangan Bencana)的监测数据,自2017年8月开始,阿贡火山的地震明显增多,有复苏和再次喷发的前兆,9月份火山警戒等级升至Ⅲ级,10月份开始有喷发柱喷出,11月喷发柱急剧上升至4km并开始有岩浆活动,警戒等级也升至最高级Ⅳ级。印度尼西亚岛链位于澳大利亚板块与欧亚板块之间,由于澳大利亚板块向北的俯冲,在此区域形成了1套完整的沟-弧-盆体系。5—6级地震的震中主要位于岛链与巽他海沟之间,与岛链大致平行,距离岛链约100—150km,地震震源深度约100km;活火山主要位于岛链内部,岩浆来源大致在深度150—200km板块的交汇处。由此可见,由澳大利亚板块俯冲而下的矿物在岛链下方150—200km处发生脱水作用,脱水诱导下覆地震的部分熔融,产生低盐度、钙碱性岩浆;岩浆上升侵入上覆板块的岩石圈中。

    1 https://www.bnpb.go.id

    图 4  印度尼西亚岛链地震与火山分布
    Figure 4.  Earthquakes and volcanoes in Indonesia island chain

    在火山喷发过程中,前期地下岩浆活动,地表热异常,火山开始膨胀;当压力达到一定程度后,火山气体首先冲出,火山通道内部的压力减小,岩浆成分挥发,火山灰喷出,随后岩浆补给,岩浆爆炸喷出或溢出火口,后期岩浆冷却收缩,火口坍塌。目前,阿贡火山处在火山灰的喷发过程,未出现岩浆溢出。自2017年6月开始,阿贡火山有所膨胀,至2017年12月膨胀近15cm,随后开始逐渐收缩(图 5)。膨胀的中心位于阿贡火山北侧附近,并未在火山的正下方,说明岩浆通道向北倾斜。

    图 5  阿贡火山喷发过程干涉条纹图及对应的地表形变
    Figure 5.  Surface deformation before and after the Agung volcano eruption

    采用“二通”法对收集到的SAR复数影像进行干涉差分处理。在处理过程中,使用SRTM4 DEM数据消除地形相位影响,同时,为保证较高的配准精度,采用结合轨道和地形数据的图像配准技术,配准精度优于0.001个像元。由于巴厘岛大部分地区为山地,且气候温和多雨,岛上植被茂盛,易造成干涉像对的失相干,同时SAR影像在山区易出现叠掩、透视收缩、阴影等,也将加剧失相干的程度。失相干区或低相干区将导致相位解缠误差,为此,使用迭代自适应滤波算法进行降噪处理,并采用基于狄洛尼三角剖分的最小费用流算法(MCF)。首先,对高质量的相位区进行解缠获得可靠的参考相位模型,再利用参考相位实现对低相干区域的解缠,从而得到全局的最优结果,最后,经过地理编码获取了阿贡火山喷发过程的InSAR形变场。

    阿贡火山自2017年9月开始活动以来,活动特征明显,浅源小震持续增多、热异常明显。2017年10月后,阿贡火山开始出现不同规模的爆炸,爆炸产生的火山灰柱上升至高空并随风向飘逸,爆炸的规模直接决定了喷发柱的高度。阿贡火山的整个喷发过程以及爆炸与喷发柱变化的关系,如图 6所示。由图可见,阿贡火山在2017年10月份主要表现为火山地震和震颤,是地下岩浆通过管道向上运移的过程,此时山体表面也开始不断膨胀,该过程一直持续到11月27日,当日发生1次剧烈爆炸,造成火山剧烈喷发,喷发柱升至海拔4km,大量火山碎屑流顺火山翼冲下,当地居民被迫迁移,航班被迫取消;在随后的3个月内,不断有地下岩浆补给,经常性地发生爆炸并产生喷发柱;在2018年2月27日之后,岩浆补给减弱,火山警戒等级下降,爆炸规模减小,喷发柱高度降低,火山表面逐渐收缩;自2017年9月末至2018年3月末,阿贡火山历经了整个喷发过程,从开始的地震活动,到喷发时大规模爆炸,再到最后阶段的平静收缩,此过程对研究其它“剧烈”型火山具有借鉴意义。

    图 6  阿贡火山喷发过程喷发柱高度变化
    Figure 6.  Changes in eruption column height during the eruption of Agung volcano

    2017年全球火山喷发较往年强烈,年度内火山数量和强度均有增大的趋势(图 7)。其中“剧烈”型火山造成的火山灾害较为严重,应对其加强监测和防灾。活火山主要分布在环太平洋地区,位于太平洋西南的印度尼西亚是2017年受灾最为严重的地区,据印尼国家灾害管理局的统计,阿贡火山的喷发造成10万余人无家可归。阿贡火山历时半年多的活动过程从膨胀到收缩,从平静到爆炸再到平静,使我们对火山喷发的过程有了更全面的了解。

    图 7  2015—2018年全球活动火山数量变化
    Figure 7.  Number of globally active volcanoes from 2015 to 2018
  • 图  1  东北地区水平运动速度场(2011—2019年)

    Figure  1.  Horizontal velocity field in Northeast China with respect to Eurasia block(2011—2019)

    图  2  跨敦化-密山断裂带的GNSS运动剖面

    Figure  2.  GNSS profiles across Dunhua-Mishan fault (DMF)

    图  3  观测站位移分量时间序列

    Figure  3.  Time series of E and N displacement component at GNSS observation station(E312)

    图  4  水准路线与垂直形变速度

    Figure  4.  Distributions of the leveling routes and vertical velocities

    图  5  利用InSAR技术得到的垂直形变速度(2014年9月—2019年1月)

    Figure  5.  Vertical velocities by InSAR(2014.09—2019.01)

    图  6  深部电性结构和解译

    Figure  6.  Deep electric structure and interpretation of the profile

  • 白登海, 廖志杰, 赵国泽等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344, 347.

    Bai D. H., Liao Z. J., Zhao G. Z., et al., 1994. The inference of magmatic heat source beneath the Rehai (Hot sea) field of Tengchong from the result of magnetotelluric sounding. Chinese Science Bulletin, 39(7): 572—577.
    白志达, 徐德斌, 张秉良等, 2006. 龙岗火山群第四纪爆破式火山作用类型与期次研究. 岩石学报, 22(6): 1473—1480 doi: 10.3321/j.issn:1000-0569.2006.06.004

    Bai Z. D. , Xu D. B. , Zhang B. L. , et al. , 2006. Study on type and phase of Quaternary explosive volcanism in Longgang volcanic cluster. Acta Petrologica Sinica, 22(6): 1473—1480. (in Chinese) doi: 10.3321/j.issn:1000-0569.2006.06.004
    樊祺诚, 刘若新, 魏海泉等, 1999. 龙岗金垅顶子近代活动火山的岩石学与地球化学. 岩石学报, 15(4): 584—589

    Fan Q. C. , Liu R. X. , Wei H. Q. , et al. , 1999. The petrology and geochemistry of Jinlongdingzi modern active volcano in Longgang area. Acta Petrologica Sinica, 15(4): 584—589. (in Chinese)
    樊祺诚, 隋建立, 刘若新等, 2002. 吉林龙岗第四纪火山活动分期. 岩石学报, 18(4): 495—500 doi: 10.3969/j.issn.1000-0569.2002.04.008

    Fan Q. C. , Sui J. L. , Liu R. X. , et al. , 2002. Periods of Quarternary volcanic activity in Longgang area, Jilin Province. Acta Petrologica Sinica, 18(4): 495—500. (in Chinese) doi: 10.3969/j.issn.1000-0569.2002.04.008
    范兴利, 陈棋福, 郭震, 2020. 长白山火山区高精度Rayleigh面波相速度结构与岩浆系统. 岩石学报, 36(7): 2081—2091 doi: 10.18654/1000-0569/2020.07.10

    Fan X. L. , Chen Q. F. , Guo Z. , 2020. High-resolution Rayleigh-wave phase velocity structure beneath the Changbaishan volcanic field associated with its magmatic system. Acta Petrologica Sinica, 36(7): 2081—2091. (in Chinese) doi: 10.18654/1000-0569/2020.07.10
    郭良迁, 1990. 东北断块区的现代地壳垂直形变及其构造活动的意义. 东北地震研究, 6(3): 15—20

    Guo L. Q. , 1990. Modern crustal vertical deformation in Northeast China block region and meaning of tectonic activity. Northeastern Seismological Research, 6(3): 15—20. (in Chinese)
    胡亚轩, 王庆良, 王雄, 2009. 利用垂直形变资料分析龙岗火山的活动性. 地震研究, 32(3): 289—294 doi: 10.3969/j.issn.1000-0666.2009.03.013

    Hu Y. X. , Wang Q. L. , Wang X. , 2009. Analysis of activity of Longgang volcano based on vertical deformation. Journal of Seismological Research, 32(3): 289—294. (in Chinese) doi: 10.3969/j.issn.1000-0666.2009.03.013
    胡亚轩, 2017. 中国火山形变监测与研究. 西安: 西安地图出版社.
    胡亚轩, 许建东, 刘国明等, 2018. 空间大地测量技术在火山形变监测中的应用. 震灾防御技术, 13(2): 410—423

    Hu Y. X. , Xu J. D. , Liu G. M. , et al. , 2018. Application of geodesy technology in deformation monitoring of volcanoes. Technology for Earthquake Disaster Prevention, 13(2): 410—423. (in Chinese)
    梁国经, 郑双凤, 郑国栋等, 2010. 龙岗火山区地震震源参数研究. 防灾减灾学报, 26(4): 22—29 doi: 10.3969/j.issn.1674-8565.2010.04.004

    Liang G. J. , Zheng S. F. , Zheng G. D. , et al. , 2010. Source parameters research of microearthquakes at Longgang volcanic area. Journal of Disaster Prevention and Reduction, 26(4): 22—29. (in Chinese) doi: 10.3969/j.issn.1674-8565.2010.04.004
    梁明, 王武星, 张晶, 2018. 联合GPS和GRACE观测研究日本MW9.0地震震后变形机制. 地球物理学报, 61(7): 2691—2704

    Liang M. , Wang W. X. , Zhang J. , 2018. Post-seismic deformation mechanism of the MW9.0 Tohoku-Oki earthquake detected by GPS and GRACE observations. Chinese Journal of Geophysics, 61(7): 2691—2704. (in Chinese)
    刘尔义, 1990. 吉林省龙岗火山群地质构造特征研究. 中国区域地质, (2): 157—165

    Liu E. Y. , 1990. The structural characteristics of the Longgang volcano group in Jilin. Regional Geology of China, (2): 157—165. (in Chinese)
    刘嘉麒, 1999. 中国火山. 北京: 科学出版社.
    刘俊清, 丁广, 张晨侠等, 2013. 吉林省龙岗火山群现今活动性研究. 华北地震科学, 31(1): 31—33, 44 doi: 10.3969/j.issn.1003-1375.2013.01.006

    Liu J. Q. , Ding G. , Zhang C. X. , et al. , 2013. Study on present activity of Longgang volcano in Jilin Province. North China Earthquake Sciences, 31(1): 31—33, 44. (in Chinese) doi: 10.3969/j.issn.1003-1375.2013.01.006
    刘若新, 樊祺诚, 郑祥身等, 1998. 长白山天池火山的岩浆演化. 中国科学(D辑), 28(3): 226—231.

    Liu R. X., Fan Q. C., Zheng X. S., et al., 1998. The magma evolution of Tianchi volcano, Changbaishan. Science in China Series D: Earth Sciences, 41(4): 382—389.
    庞广华, 2017. 东北典型区域宽频带地震背景噪声成像研究. 长春: 吉林大学.

    Pang G. H. , 2017. Broadband seismic ambient noise tomography in typical regions of Northeast China. Changchun: Jilin University. (in Chinese)
    綦伟, 刘俊清, 李仲巍等, 2013. 龙岗火山喷发危险性初探. 防灾减灾学报, 29(4): 70—73 doi: 10.3969/j.issn.1674-8565.2013.04.016

    Qi W. , Liu J. Q. , Li Z. W. , et al. , 2013. Preliminary discussion on the risk of volcano eruption in Longgang area. Journal of Disaster Prevention and Reduction, 29(4): 70—73. (in Chinese) doi: 10.3969/j.issn.1674-8565.2013.04.016
    仇根根, 裴发根, 方慧等, 2014. 长白山天池火山岩浆系统分析. 地球物理学报, 57(10): 3466—3477 doi: 10.6038/cjg20141032

    Qiu G. G. , Pei F. G. , Fang H. , et al. , 2014. Analysis of magma chamber at the Tianchi volcano area in Changbai Mountain. Chinese Journal of Geophysics, 57(10): 3466—3477. (in Chinese) doi: 10.6038/cjg20141032
    隋建立, 樊祺诚, 曹杰, 1999. 龙岗火山喷发特征与火山岩岩石化学初步研究. 地质论评, 45(S1): 319—324 doi: 10.16509/j.georeview.1999.s1.162

    Sui J. L. , Fan Q. C. , Cao J. , 1999. A preliminary study of eruption features and petrochemistry of volcanic rocks from the Longgang volcanoes. Geological Review, 45(S1): 319—324. (in Chinese) doi: 10.16509/j.georeview.1999.s1.162
    汤吉, 邓前辉, 赵国泽等, 2001. 长白山天池火山区电性结构和岩浆系统. 地震地质, 23(2): 191—200 doi: 10.3969/j.issn.0253-4967.2001.02.008

    Tang J. , Deng Q. H. , Zhao G. Z. , et al. , 2001. Electric conductivity and magma chamber at the Tianchi volcano area in Changbaishan Mountain. Seismology and Geology, 23(2): 191—200. (in Chinese) doi: 10.3969/j.issn.0253-4967.2001.02.008
    田有, 马锦程, 刘财等, 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义. 地球物理学报, 62(3): 1071—1082 doi: 10.6038/cjg2019M0061

    Tian Y. , Ma J. C. , Liu C. , et al. , 2019. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications. Chinese Journal of Geophysics, 62(3): 1071—1082. (in Chinese) doi: 10.6038/cjg2019M0061
    王凯红, 纪春华, 王秀萍, 2004. 敦密断裂带的地质特征及演化. 吉林地质, 23(4): 23—27

    Wang K. H. , Ji C. H. , Wang X. P. , 2004. The geologic features of the Dunmi faulted zone and its evolution. Jilin Geology, 23(4): 23—27. (in Chinese)
    王敏, 李强, 王凡等, 2011. 全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移. 科学通报, 56(20): 1593—1596.

    Wang M., Li Q., Wang F., et al., 2011. Far-field coseismic displacements associated with the 2011 Tohoku-Oki earthquake in Japan observed by global positioning system. Chinese Science Bulletin, 56(23): 2419—2424.
    王武, 陈棋福, 2017. 长白山火山区地壳S波速度结构的背景噪声成像. 地球物理学报, 60(8): 3080—3095 doi: 10.6038/cjg20170816

    Wang W. , Chen Q. F. , 2017. The crust S-wave velocity structure under the Changbaishan volcano area in Northeast China inferred from ambient noise tomography. Chinese Journal of Geophysics, 60(8): 3080—3095. (in Chinese) doi: 10.6038/cjg20170816
    杨清福, 王建, Hattori K. H. 等, 2011. 吉林南部辉南-靖宇地区岩石圈地幔氧化-还原状态及研究意义. 岩石学报, 27(6): 1797—1809

    Yang Q. F. , Wang J. , Hattori K. H. , et al. , 2011. Redox state of the lithospheric mantle beneath Huinan-Jingyu area, southern Jilin Province, China. Acta Petrologica Sinica, 27(6): 1797—1809. (in Chinese)
    于红梅, 许建东, 吴建平等, 2013. 龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估. 震灾防御技术, 8(1): 62—71 doi: 10.3969/j.issn.1673-5722.2013.01.007

    Yu H. M. , Xu J. D. , Wu J. P. , et al. , 2013. Numerical simulation and probabilistic hazard assessment of tephra fallout at Jinlongdingzi volcano, Longgang volcanic field in Jilin Province. Technology for Earthquake Disaster Prevention, 8(1): 62—71. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.01.007
    于吉鹏, 孟国杰, 苏小宁等, 2019. 基于GPS观测研究中国东北地区现今地壳形变特征. 地震, 39(3): 11—27 doi: 10.3969/j.issn.1000-3274.2019.03.002

    Yu J. P. , Meng G. J. , Su X. N. , et al. , 2019. The current crustal deformation of Northeast China deduced from GPS observations. Earthquake, 39(3): 11—27. (in Chinese) doi: 10.3969/j.issn.1000-3274.2019.03.002
    詹艳, 赵国泽, 王继军等, 2006. 黑龙江五大连池火山群地壳电性结构. 岩石学报, 22(6): 1494—1502 doi: 10.3321/j.issn:1000-0569.2006.06.007

    Zhan Y. , Zhao G. Z. , Wang J. J. , et al. , 2006. Crustal electric conductivity structure for Wudalianchi volcanic cluster in the Heilongjiang Province, China. Acta Petrologica Sinica, 22(6): 1494—1502. (in Chinese) doi: 10.3321/j.issn:1000-0569.2006.06.007
    张风雪, 吴庆举, 李永华, 2013. 中国东北地区远震P波走时层析成像研究. 地球物理学报, 56(8): 2690—2700 doi: 10.6038/cjg20130818

    Zhang F. X. , Wu Q. J. , Li Y. H. , 2013. The traveltime tomography study by teleseismic P wave data in the Northeast China area. Chinese Journal of Geophysics, 56(8): 2690—2700. (in Chinese) doi: 10.6038/cjg20130818
    张风雪, 吴庆举, 李永华, 2014. 中国东北地区远震S波走时层析成像研究. 地球物理学报, 57(1): 88—101 doi: 10.6038/cjg20140109

    Zhang F. X. , Wu Q. J. , Li Y. H. , 2014. A traveltime tomography study by teleseismic S wave data in the Northeast China area. Chinese Journal of Geophysics, 57(1): 88—101. (in Chinese) doi: 10.6038/cjg20140109
    张广成, 吴庆举, 潘佳铁等, 2013. 利用H-K叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比. 地球物理学报, 56(12): 4084—4094 doi: 10.6038/cjg20131213

    Zhang G. C. , Wu Q. J. , Pan J. T. , et al. , 2013. Study of crustal structure and Poisson ratio of NE China by H-K stack and CCP stack methods. Chinese Journal of Geophysics, 56(12): 4084—4094. (in Chinese) doi: 10.6038/cjg20131213
    张国生, 姜城, 刘俊清等, 2009. 抚松ML5.0级地震及浑江断裂带地震活动性研究. 东北地震研究, 25(4): 8—12

    Zhang G. S. , Jiang C. , Liu J. Q. , et al. , 2009. Analysis on the Fusong ML5.0 earthquake and seismic activity of the Hunjiang fault zone. Seismological Research of Northeast China, 25(4): 8—12. (in Chinese)
    张培震, 王琪, 马宗晋, 2002. 中国大陆现今构造运动的GPS速度场与活动地块. 地学前缘, 9(2): 430—441 doi: 10.3321/j.issn:1005-2321.2002.02.022

    Zhang P. Z. , Wang Q. , Ma Z. J. , 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China. Earth Science Frontiers, 9(2): 430—441. (in Chinese) doi: 10.3321/j.issn:1005-2321.2002.02.022
    Guo Z. , Chen Y. J. , Ning J. Y. , et al. , 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth and Planetary Science Letters, 433: 31—43. doi: 10.1016/j.jpgl.2015.09.035
    Ji L. Y. , Wang Q. L. , Wang S. X. , 2014. Present-day 3 D deformation field of Northeast China, observed by GPS and leveling. Geodesy and Geodynamics, 5(3): 34—40. doi: 10.3724/SP.J.1246.2014.03034
    Lei J. S., Zhao D. P., 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397(3—4): 281—295.
    Song J. L., Hetland E. A., Wu F. T., et al., 2007. P-wave velocity structure under the Changbaishan volcanic region, NE China, from wide-angle reflection and refraction data. Tectonophysics, 433(1—4): 127—139.
    Wang, M. , Shen, Z. K. , 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019 JB018774.
    Xu J. D., Liu G. M., Wu J. P., et al., 2012. Recent unrest of Changbaishan volcano, Northeast China: a precursor of a future eruption? Geophysical Research Letter, 39(16): L16305.
    Yu Z. Y. , Yin N. , Shu P. , et al. , 2018. Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong fault zone in NE China. Journal of Asian Earth Sciences, 151: 197—225. doi: 10.1016/j.jseaes.2017.10.038
    Zhao D. P. , Xu Y. B. , Wiens D. A. , et al. , 1997. Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science, 278(5336): 254—257. doi: 10.1126/science.278.5336.254
  • 加载中
图(6)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 刊出日期:  2022-12-31

目录

/

返回文章
返回