• ISSN 1673-5722
  • CN 11-5429/P

青海玛多MS7.4地震前b值时空变化特征

杜航 杨云 郑江蓉 王俊 张扬 宫杰

杜航,杨云,郑江蓉,王俊,张扬,宫杰,2022. 青海玛多MS7.4地震前b值时空变化特征. 震灾防御技术,17(4):691−700. doi:10.11899/zzfy20220409. doi: 10.11899/zzfy20220409
引用本文: 杜航,杨云,郑江蓉,王俊,张扬,宫杰,2022. 青海玛多MS7.4地震前b值时空变化特征. 震灾防御技术,17(4):691−700. doi:10.11899/zzfy20220409. doi: 10.11899/zzfy20220409
Du Hang, Yang Yun, Zheng Jiangrong, Wang Jun, Zhang Yang, Gong Jie. Temporal and Spatial Variation of b-value before Maduo MS7.4 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 691-700. doi: 10.11899/zzfy20220409
Citation: Du Hang, Yang Yun, Zheng Jiangrong, Wang Jun, Zhang Yang, Gong Jie. Temporal and Spatial Variation of b-value before Maduo MS7.4 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 691-700. doi: 10.11899/zzfy20220409

青海玛多MS7.4地震前b值时空变化特征

doi: 10.11899/zzfy20220409
基金项目: 江苏省地震局青年科学基金(202102);地震预测开放基金(XH22033D);江苏省地震局科技创新团队(202204)
详细信息
    作者简介:

    杜航,男,生于1991年。工程师。主要从事地震监测、预报等方面研究。E-mail:duh@mail.ustc.edu.cn

Temporal and Spatial Variation of b-value before Maduo MS7.4 Earthquake

  • 摘要: 大量研究表明地震孕育过程中存在相对平静期,该阶段b值会相对下降,b值变化在地震活动性研究中起着十分重要的作用。2021年5月22日青海玛多发生MS7.4地震,为研究地震前b值时空变化特征,本文截取2009年至震前地震目录,将地震目录分为去除余震目录、完整地震目录,对比研究b值变化特征。研究发现,玛多MS7.4地震前1年b值开始低于均值且不断下降,至b值有上升趋势时地震发生,扩大到区域内其它5级以上地震,也符合此规律,地震发生后b值明显上升,短时间内又下降至较低位置,并一直处于较低位置直至下次地震发生;从b值空间扫描结果看,玛多MS7.4地震前,震中位于低b值区域,该位置为b值最低处;通过不同时间段的b值空间扫描结果,可发现玛多MS7.4地震发生前低b值区域向震中不断迁移,表明地震发生前震中附近应力不断集中;b值空间扫描时,完整地震目录掩盖了中强震震中区域低b值特性,去余震地震目录较好的凸显了中强震震中区域低b值特性。
  • 图  1  青藏高原主要活动断裂及历史地震分布

    Figure  1.  Simplified distribution of main active faults and historic earthquakes in the Qinghai-Tibet plateau

    图  2  研究区域中强震(MS≥5.0)及玛多地震余震(ML≥3.0)分布图

    Figure  2.  Simplified distribution of major earthquake(MS≥5.0)and Maduo earthquake aftershocks(ML≥3.0)in the study area

    图  3  研究区域2009年1月1日—2021年4月30日震级-频次图

    Figure  3.  The frequency-magnitude distribution of earthquakes in the study area during January, 2009—April, 2021

    图  4  b值时间曲线

    Figure  4.  The temporal variation of b value

    图  5  去余震目录b值空间分布图像

    Figure  5.  Spatial distribution of b value with deleting aftershock

    图  6  完整目录b值空间分布图像

    Figure  6.  Spatial distribution of b value without deleting aftershock

  • 陈凌, 刘杰, 陈颙等, 1998. 地震活动性分析中余震的删除. 地球物理学报, 41(S1): 244—252

    Chen L. , Liu J. , Chen Y. , et al. , 1998. Aftershock deletion in seismicity analysis. Acta Geophysics Sinica, 41(S1): 244—252. (in Chinese)
    陈培善, 白彤霞, 李保昆, 2003. b值和地震复发周期. 地球物理学报, 46(4): 510—519 doi: 10.3321/j.issn:0001-5733.2003.04.013

    Chen P. S. , Bai T. X. , Li B. K. , 2003. b-value and earthquake occurrence period. Chinese Journal of Geophysics, 46(4): 510—519. (in Chinese) doi: 10.3321/j.issn:0001-5733.2003.04.013
    邓起东, 张培震, 冉勇康等, 2003. 中国活动构造与地震活动. 地学前缘, 10(S1): 66—73

    Deng Q. D. , Zhang P. Z. , Ran Y. K. , et al. , 2003. Active tectonics and earthquake activities in China. Earth Science Frontiers, 10(S1): 66—73. (in Chinese)
    邓文泽, 杨志高, 席楠等, 2021.2021年5月22日青海玛多M7.4地震的快速测定与数据产品产出. 中国地震, 37(2): 541—550 doi: 10.3969/j.issn.1001-4683.2021.02.025

    Deng W. Z. , Yang Z. G. , Xi N. , et al. , 2021. Fast determination and data production related to the M7.4 earthquake on May 22, 2021 in Maduo, Qinghai province. Earthquake Research in China, 37(2): 541—550. (in Chinese) doi: 10.3969/j.issn.1001-4683.2021.02.025
    韩晓明, 张文韬, 王树波等, 2016. 河套地震带的b值时空变化特征分析. 中国地震, 32(3): 522—532 doi: 10.3969/j.issn.1001-4683.2016.03.009

    Han X. M. , Zhang W. T. , Wang S. B. , et al. , 2016. Analysis of spatial and temporal variation characteristics of b-value in the Hetao seismic belt. Earthquake Research in China, 32(3): 522—532. (in Chinese) doi: 10.3969/j.issn.1001-4683.2016.03.009
    刘艳辉, 赵根模, 吴中海等, 2015. 青藏高原东南缘及邻区近年来地震b值特征. 地质通报, 34(1): 58—70 doi: 10.3969/j.issn.1671-2552.2015.01.005

    Liu Y. H. , Zhang G. M. , Wu Z. H. , et al. , 2015. An analysis ofb-value characteristics of earthquake on the southeastern margin of the Tibetan Plateau and its neighboring areas. Geological Bulletin of China, 34(1): 58—70. (in Chinese) doi: 10.3969/j.issn.1671-2552.2015.01.005
    潘家伟, 白明坤, 李超等, 2021.2021年5月22日青海玛多M7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655—1670 doi: 10.3969/j.issn.0001-5717.2021.06.001

    Pan J. W. , Bai M. K. , Li C. , et al. , 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake. Acta Geologica Sinica, 95(6): 1655—1670. (in Chinese) doi: 10.3969/j.issn.0001-5717.2021.06.001
    石峰, 李安, 杨晓平等, 2013. 甘孜-玉树断裂带东南段晚第四纪活动性研究. 地震地质, 35(1): 50—63 doi: 10.3969/j.issn.0253-4967.2013.01.004

    Shi F. , Li A. , Yang X. P. , et al. , 2013. Research on late quaternary activity of the southeastern segment of Ganzi-Yushu fault zone. Seismology and Geology, 35(1): 50—63. (in Chinese) doi: 10.3969/j.issn.0253-4967.2013.01.004
    史海霞, 孟令媛, 张雪梅等, 2018. 汶川地震前的b值变化. 地球物理学报, 61(5): 1874—1882 doi: 10.6038/cjg2018M0024

    Shi H. X. , Meng L. Y. , Zhang X. M. , et al. , 2018. Decrease in b value prior to the Wenchuan earthquake (MS8.0). Chinese Journal of Geophysics, 61(5): 1874—1882. (in Chinese) doi: 10.6038/cjg2018M0024
    闻学泽, 徐锡伟, 郑荣章等, 2003. 甘孜-玉树断裂的平均滑动速率与近代大地震破裂. 中国科学(D辑), 33(S1): 199—208.

    Wen X. Z., Xu X. W., Zheng R. Z., et al., 2003. Average slip-rate and recent large earthquake ruptures along the Garzê-Yushu fault. Science in China Series D: Earth Sciences, 46(2): 276—288.
    闻学泽, 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和2017年九寨沟地震. 地震学报, 40(3): 255—267 doi: 10.11939/jass.20170211

    Wen X. Z. , 2018. The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou earthquakes, Sichuan, in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block. Acta Seismologica Sinica, 40(3): 255—267. (in Chinese) doi: 10.11939/jass.20170211
    谢卓娟, 吕悦军, 方怡等, 2019. 京津冀地区的地震活动性研究. 地球物理学进展, 34(3): 961—968 doi: 10.6038/pg2019AA0624

    Xie Z. J. , Lv Y. J. , Fang Y. , et al. , 2019. Research on the seismic activity of the Beijing-Tianjin-Hebei region. Progress in Geophysics, 34(3): 961—968. (in Chinese) doi: 10.6038/pg2019AA0624
    熊仁伟, 任金卫, 张军龙等, 2010. 玛多-甘德断裂甘德段晚第四纪活动特征. 地震, 30(4): 65—73 doi: 10.3969/j.issn.1000-3274.2010.04.008

    Xiong R. W. , Ren J. W. , Zhang J. L. , et al. , 2010. Late quaternary active characteristics of the Gande segment in the Maduo-Gande fault zone. Earthquake, 30(4): 65—73. (in Chinese) doi: 10.3969/j.issn.1000-3274.2010.04.008
    徐锡伟, 陈文彬, 于贵华等, 2002.2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征. 地震地质, 24(1): 1—13 doi: 10.3969/j.issn.0253-4967.2002.01.001

    Xu X. W. , Chen W. B. , Yu G. H. , et al. , 2002. Characteristic features of the surface ruptures of the Hoh Sai Hu (Kunlunshan) earthquake (MS8.1), northern Tibetan Plateau, China. Seismology and Geology, 24(1): 1—13. (in Chinese) doi: 10.3969/j.issn.0253-4967.2002.01.001
    易桂喜, 闻学泽, 王思维等, 2006. 由地震活动参数分析龙门山-岷山断裂带的现今活动习性与强震危险性. 中国地震, 22(2): 117—125 doi: 10.3969/j.issn.1001-4683.2006.02.001

    Yi G. X. , Wen X. Z. , Wang S. W. , et al. , 2006. Study on fault sliding behaviors and strong-earthquake risk of the Longmenshan-Minshan fault zones from current seismicity parameters. Earthquake Research in China, 22(2): 117—125. (in Chinese) doi: 10.3969/j.issn.1001-4683.2006.02.001
    易桂喜, 闻学泽, 2007. 多地震活动性参数在断裂带现今活动习性与地震危险性评价中的应用与问题. 地震地质, 29(2): 254—271 doi: 10.3969/j.issn.0253-4967.2007.02.005

    Yi G. X. , Wen X. Z. , 2007. The application and limitation of multiple seismicity parameters to assessing current faulting behavior and seismic potential of active fault zones. Seismology and Geology, 29(2): 254—271. (in Chinese) doi: 10.3969/j.issn.0253-4967.2007.02.005
    曾宪伟, 李文君, 马翀之等, 2021. 基于b值分析宁夏吴忠-灵武地区强震危险性. 地震研究, 44(1): 41—48 doi: 10.3969/j.issn.1000-0666.2021.01.006

    Zeng X. W. , Li W. J. , Ma C. Z. , et al. , 2021. Strong earthquake risk in Wuzhong-Lingwu region of Ningxia based on b-value. Journal of Seismological Research, 44(1): 41—48. (in Chinese) doi: 10.3969/j.issn.1000-0666.2021.01.006
    詹艳, 梁明剑, 孙翔宇等, 2021.2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式. 地球物理学报, 64(7): 2232—2252 doi: 10.6038/cjg2021O0521

    Zhan Y. , Liang M. J. , Sun X. Y. , et al. , 2021. Deep structure and seismogenic pattern of the 2021.5. 22 Madoi (Qinghai) MS7.4 earthquake.Chinese Journal of Geophysics,64(7):2232—2252.(in Chinese) doi: 10.6038/cjg2021O0521
    张培震, 邓起东, 张国民等, 2003. 中国大陆的强震活动与活动地块. 中国科学(D辑), 33(S1): 12—20.

    Zhang P. Z., Deng Q. D., Zhang G. M., et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences, 46(2): 13—24.
    张喆, 许力生, 2021.2021年青海玛多MW7.5地震矩心矩张量解. 地震学报, 43(3): 387—391 doi: 10.11939/jass.20210079

    Zhang Z. , Xu L. S. , 2021. The centroid moment tensor solution of the 2021 MW7.5 Maduo, Qinghai, earthquake. Acta Seismologica Sinica, 43(3): 387—391. (in Chinese) doi: 10.11939/jass.20210079
    Aki K., 1965. Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, University of Tokyo, 43(2): 237—239.
    Chen G. H. , Xu X. W. , Wen X. Z. , et al. , 2016. Late Quaternary slip-rates and slip partitioning on the southeastern Xianshuihe fault system, eastern Tibetan plateau. Acta Geologica Sinica (English Edition), 90(2): 537—554. doi: 10.1111/1755-6724.12689
    Chevalier M. L., Leloup P. H., Replumaz A., et al., 2018. Temporally constant slip rate along the Ganzi Fault, NW Xianshuihe fault system, eastern Tibet. GSA Bulletin, 130(3—4): 396—410.
    Gutenberg B. , Richter C. F. , 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185—188. doi: 10.1785/BSSA0340040185
    Keilis-Borok V. I. , Konopoff L. , 1980. Bursts of aftershock of strong earthquakes. Nature, 283(P5744): 259—263.
    Kirby E. , Harkins N. , Wang E. Q. , et al. , 2007. Slip rate gradients along the eastern Kunlun fault. Tectonics, 26(2): TC2010.
    Kun F. , Varga I. , Lennartz-Sassinek S. , et al. , 2013. Approach to failure in porous granular materials under compression. Physical Review E, 88(6): 062207. doi: 10.1103/PhysRevE.88.062207
    Mogi K. , 1962. Study of the elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bulletin of the Earthquake Research Institute, 40(1): 125—173.
    Molnar P. , Stock J. M. , 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28(3): TC3001.
    Mousavi S. M. , Ogwari P. O. , Horton S. P. , et al. , 2017. Spatio-temporal evolution of frequency-magnitude distribution and seismogenic index during initiation of induced seismicity at Guy-Greenbrier, Arkansas. Physics of the Earth and Planetary Interiors, 267: 53—66. doi: 10.1016/j.pepi.2017.04.005
    Nanjo K. Z. , Yoshida A. , 2018. A b map implying the first eastern rupture of the Nankai Trough earthquakes. Nature Communications, 9(1): 1117. doi: 10.1038/s41467-018-03514-3
    Nievas C. I. , Bommer J. J. , Crowley H. , et al. , 2020. Global occurrence and impact of small-to-medium magnitude earthquakes: a statistical analysis. Bulletin of Earthquake Engineering, 18(1): 1—35. doi: 10.1007/s10518-019-00718-w
    Nuannin P. , Kulhánek O. , Persson L. , 2012. Variations of b-values preceding large earthquakes in the Andaman-Sumatra subduction zone. Journal of Asian Earth Sciences, 61: 237—242. doi: 10.1016/j.jseaes.2012.10.013
    Reasenberg P. , 1985. Second-order moment of central California seismicity, 1969—1982. Journal of Geophysical Research: Solid Earth, 90(B7): 5479—5495. doi: 10.1029/JB090iB07p05479
    Ren J. J. , Xu X. W. , Yeats R. S. , et al. , 2013. Millennial slip rates of the Tazang fault, the eastern termination of Kunlun Fault: implications for strain partitioning in eastern Tibet. Tectonophysics, 608: 1180—1200. doi: 10.1016/j.tecto.2013.06.026
    Rivière J. , Lv Z. , Johnson P. A. , et al. , 2018. Evolution of b-value during the seismic cycle: insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters, 482: 407—413. doi: 10.1016/j.jpgl.2017.11.036
    Rui X. , Stamps D. S. , 2016. Present-day kinematics of the eastern Tibetan Plateau and Sichuan Basin: Implications for lower crustal rheology. Journal of Geophysical Research: Solid Earth, 121(5): 3846—3866. doi: 10.1002/2016JB012839
    Sandri L. , Marzocchi W. , 2007. A technical note on the bias in the estimation of the b-value and its uncertainty through the Least Squares technique. Annals of Geophysics, 50(3): 329—339.
    Scholz C. H. , 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1): 399—415. doi: 10.1785/BSSA0580010399
    Scholz C. H. , 2015. On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5): 1399—1402. doi: 10.1002/2014GL062863
    Tormann T. , Enescu B. , Woessner J. , et al. , 2015. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2): 152—158. doi: 10.1038/ngeo2343
    Weichert D. H. , 1980. Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America, 70(4): 1337—1346. doi: 10.1785/BSSA0700041337
    Wiemer S. , Wyss M. , 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4): 859—869. doi: 10.1785/0119990114
    Xu X. W. , Yu G. H. , Klinger Y. , et al. , 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8), northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5): B05316.
    Zhang P. Z. , 2013. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan plateau. Tectonophysics, 584: 7—22. doi: 10.1016/j.tecto.2012.02.021
  • 加载中
图(6)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  21
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回