Comparative Analysis of Casualties between Lushan M6.1 Earthquake and Luxian M6.0 Earthquake
-
摘要: 本文根据芦山6.1级地震及泸县6.0级地震现场调查资料,对比分析2次地震伤亡人员的空间分布及伤亡原因,得出避震不当是造成2次地震人员伤亡的重要因素之一。其中,芦山6.1级地震重伤及遇难人员多集中在Ⅶ度区,多数因次生地质灾害躲避不当致伤;泸县6.0级地震伤亡人员数量与地震烈度呈现正相关性,重伤及遇难人员均因房屋及其附属构件震损致伤。根据分析结果,从科普宣传、房屋及其附属构件抗震设防、次生地质灾害防治方面提出建议,为当地防震减灾提供参考。Abstract: According to the on-site investigation data of the Lushan M6.1 earthquake and the Luxian M6.0 earthquake, the spatial distribution of casualties and the causes of casualties in the two earthquakes were compared and analyzed, and it was concluded that unreasonable aviodance was one of the important factors for casualties in the two earthquakes. Among them, most of the seriously injured and dead people in the Lushan M6.1 earthquake were concentrated in intensity VII area, and most of them were injured due to improper avoidance of secondary geological disasters. The victims were injured due to the earthquake damage to the house and its ancillary components. According to the analysis results, suggestions are put forward from the aspects of popular science propaganda, seismic fortification of houses and their ancillary components, and prevention of secondary geological disasters, so as to provide reference for local earthquake prevention and disaster reduction.
-
Key words:
- Casualties /
- Lushan M6.1 earthquake /
- Luxian M6.0 earthquake
1) 2 宝兴县应急管理局,2022. 宝兴地震突发公共事件伤(病)情信息统计报告表. -
引言
为了确定工程的场地相关反应谱,需要考虑场地条件对地震动的影响。对于横向性质变化较小的工程场地,通常采用一维模型进行土层地震反应分析。核设施土层地震反应分析工作对地震动输入和土层模型的要求较高,如自由基岩表面地震动反应谱应按确定性和概率方法的计算结果分别确定、地震动输入界面的剪切波速不小于700m/s、应根据土力学性能测定结果确定模型参数等,这些技术要求通过限制模型参数的不确定性,提高了土层地震反应分析结果的可靠性。
考虑到土层地震反应分析中的不确定性,我国的地震安全性评价规范要求进行多个钻孔场地力学模型和多个地震动时程样本的组合地震反应分析计算,再综合评判多个钻孔场地力学模型和输入多个地震动组合时的计算结果,以确定场地的地震动参数。综合评判通常采用对地震动反应谱值的平均拟合方法或者外包络法(卢寿德,2006)。美国核电厂地震危险性分析工作基于工程场地的钻孔、原位测试和室内实验结果,根据动力特性和波速分布的研究成果,随机生成土层模型,表征土层模型参数的不确定性;采用调整天然地震动或利用随机振动理论方法,确定自由地表基岩地震动输入进行土层地震反应分析;对计算出的放大系数进行统计,再以放大系数分布的均值乘以基岩地震动反应谱,确定工程的场地相关谱(Silva等,1996;USNRC,2007)。
综上所述,中美两国核设施土层地震反应分析的总体思路是一致的,都是采用地震动-土层动力学模型组合的方式来考虑土层地震反应分析结果的不确定性。可能影响分析结果的参数包括基岩地震动、土层动力特性和土层剪切波速。
石玉成等(1999)采用Monte Carlo方法对影响土层地震反应分析结果的不确定因素进行了分析;王恒知等(2009)分析了时程拟合参数对土层地震反应分析结果的影响;施春花等(2009)统计分析了北京地区不同深度粘土的动力特性,采用等效线性化方法分析了统计结果的代表性,为北京地区难以取得原状土的工程场地地震安评工作提供了参考;王玉石等(2016)总结了强震动条件下土体非线性动力特性研究的发展历程和方向;沈建文等(2010, 2011)分析了土体剪应变折减系数对土层地震反应分析结果的影响,提出了采用震级和距离参数修正土层反应的等效线性化方法,建议使用设定地震定义震级和距离;Robinson等(2006)考虑了土层厚度和波速结构的不确定性,基于实测数据,随机生成土层模型,分析了悉尼港口地区的地震危险性及其不确定性。这些研究工作的地震动输入均为与目标谱匹配的地震动时程,加速度时程是地震动随机过程的实现。由于地震动随机过程的变异性较大,为了给出土层地表加速度反应谱的稳定估计值,需要采用多条时程进行多次分析。美国核管会(U. S. Nuclear Regulatory Commission,USNRC)的管理导则中推荐了随机振动理论(Random Vibration Theory,RVT)方法,该方法以幅值谱和持时作为输入,降低了分析工作的计算量和对地震动时程的依赖,可以快速准确地估计工程场地的地表地震动(Schneider等,1991;Silva等,1996;Boore,2003;Rathje等,2006;Ozbey,2006;USNRC,2007;Rathje等,2010;Boore等,2015)。
本文以某核电厂址为例,采用随机振动理论方法确定基岩地震动输入,基于工程场地土力学和剪切波速测试数据,随机生成土层模型,进行土层地震反应分析,讨论土层波速剖面、动力特性、基岩地震动输入界面不确定性对土层地震反应分析结果的影响。
1. 基岩地震危险性和土层模型
本文重点在于土层地震反应分析,因此不再详述厂址基岩地震危险性的评价过程,评价结果见图 1。图 1中的数据为厂址特定基岩地表地震动(SL-2),是概率法和确定论方法评价结果的包络值,其中概率论方法的年平均超越概率为1×10-4。
依据我国地震安全性评价工作的规范要求,在不同位置对工程场地进行了多个钻孔测试,将其中的控制孔分别命名为zk1、zk2和zk3。钻孔岩石地层柱状图和剪切波速剖面图见图 2。
图 2(a)中从左至右依次为zk1、zk2和zk3的剖面。从图 2(a)可知,工程场地的主要地层包括粘土、粉质粘土、粉砂、玄武岩、火山角砾岩、粘土岩,其中zk3未见粘土岩。图 2(b)中的红色、蓝色和黑色曲线分别代表zk1、zk2和zk3中介质剪切波速随深度的变化。由图 2(b)可以看出,粘土和砂土中的剪切波速随深度的增加逐渐变大,玄武岩和火山角砾岩中的剪切波速与土壤中的剪切波速相比,存在明显的突变,其中玄武岩的剪切波速又明显高于火山角砾岩中的剪切波速。3个钻孔位于同一场地中,相互距离处在百米量级上。土壤中剪切波速随深度的变化趋势基本一致,玄武岩和火山角砾岩中剪切波速随着风化程度的变化而变化,但是都远远高于美国西部强地面运动记录中基岩的定义值(760m/s),因此可以据此对zk3的剖面进行波速延拓,至国标定义的基岩地震动输入界面。
为了确定土层的动力非线性特性,对钻孔内各土层的典型样品分别进行了共振柱和动三轴实验,综合确定了土层样品的动剪切模量比(G/Gmax)和阻尼比(λ)随动剪应变(γ)的变化,土层样品动力非线性特征见表 1,剪切模量比和阻尼比与剪应变关系曲线如图 3所示。
表 1 土层样品动力非线性特性Table 1. The shear modulus and damping ratio vs. strain of soil samples序号 土层名称 剪切模量比与阻尼比 剪应变γ/10-4 0.05 0.1 0.5 1 5 10 50 100 1 粉质粘土 G/Gmax 0.993 0.987 0.937 0.881 0.718 0.56 0.203 0.113 λ 0.004 0.007 0.028 0.045 0.06 0.098 0.204 0.236 2 粉土 G/Gmax 0.993 0.986 0.936 0.879 0.749 0.599 0.23 0.13 λ 0.004 0.007 0.023 0.033 0.068 0.11 0.22 0.251 3 粉质粘土 G/Gmax 0.996 0.992 0.96 0.924 0.661 0.493 0.163 0.089 λ 0.005 0.009 0.032 0.047 0.065 0.103 0.192 0.215 4 粉质粘土 G/Gmax 0.991 0.983 0.919 0.87 0.762 0.678 0.316 0.188 λ 0.005 0.009 0.032 0.047 0.055 0.091 0.193 0.224 5 粉质粘土 G/Gmax 0.99 0.98 0.905 0.827 0.702 0.601 0.232 0.131 λ 0.005 0.009 0.032 0.047 0.061 0.099 0.198 0.226 6 粉砂 G/Gmax 0.989 0.978 0.947 0.906 0.822 0.716 0.371 0.227 λ 0.005 0.009 0.032 0.037 0.054 0.083 0.186 0.282 7 粉砂 G/Gmax 0.991 0.982 0.936 0.892 0.802 0.704 0.336 0.202 λ 0.005 0.009 0.032 0.047 0.067 0.091 0.189 0.219 8 粉质粘土 G/Gmax 0.992 0.985 0.938 0.896 0.801 0.703 0.321 0.191 λ 0.005 0.009 0.032 0.044 0.063 0.085 0.172 0.208 9 粉质粘土 G/Gmax 0.992 0.984 0.923 0.884 0.703 0.611 0.239 0.136 λ 0.005 0.009 0.032 0.047 0.071 0.088 0.175 0.206 10 粉质粘土 G/Gmax 0.993 0.986 0.935 0.886 0.713 0.624 0.249 0.142 λ 0.002 0.005 0.022 0.038 0.075 0.093 0.198 0.242 11 粉质粘土 G/Gmax 0.99 0.98 0.907 0.862 0.712 0.607 0.236 0.134 λ 0.021 0.032 0.061 0.078 0.118 0.143 0.179 0.198 12 粉质粘土 G/Gmax 0.992 0.984 0.924 0.859 0.633 0.463 0.147 0.079 λ 0.019 0.03 0.046 0.058 0.092 0.112 0.169 0.184 13 粉质粘土 G/Gmax 0.996 0.991 0.958 0.919 0.813 0.685 0.303 0.179 λ 0.002 0.004 0.018 0.03 0.05 0.083 0.18 0.211 14 粉质粘土 G/Gmax 0.989 0.978 0.913 0.876 0.782 0.701 0.413 0.262 λ 0.017 0.025 0.041 0.044 0.053 0.066 0.128 0.189 15 粉砂 G/Gmax 0.992 0.984 0.925 0.861 0.664 0.497 0.165 0.09 λ 0.004 0.007 0.025 0.036 0.074 0.12 0.239 0.273 16 粉质粘土 G/Gmax 0.994 0.989 0.946 0.897 0.728 0.572 0.211 0.118 λ 0.005 0.009 0.03 0.041 0.062 0.086 0.189 0.228 17 粉质粘土 G/Gmax 0.993 0.986 0.943 0.905 0.834 0.763 0.439 0.281 λ 0.005 0.01 0.034 0.048 0.068 0.081 0.157 0.179 18 粉质粘土 G/Gmax 0.995 0.991 0.955 0.915 0.746 0.595 0.227 0.128 λ 0.002 0.004 0.018 0.031 0.056 0.094 0.203 0.238 19 粉细砂 G/Gmax 0.992 0.985 0.934 0.897 0.831 0.757 0.453 0.293 λ 0.001 0.003 0.012 0.018 0.035 0.05 0.104 0.12 图 3给出了表 1中土样动力非线性特征测量值的拟合曲线,由图 3(a)可知,随着剪应变的增大,剪切模量比逐渐减小。由图 3(b)可知,随着剪应变的增大,阻尼比逐渐增大。需要注意的是,由于工程场地内采集的样品进行了动三轴和共振柱实验,剪应变的变化范围较大,使得阻尼比的最大值可达20%以上。
2. 随机振动理论方法(RVT)
Schneider等于1991年首次提出了采用随机振动理论方法进行场地响应分析的思路,RVT方法的输入为傅立叶幅值谱(FAS)和持时(Tgm),不需要地震动时程,可以通过一次分析就给出场地响应的分布特征(Schneider等,1991)。Silva等(1996)将RVT方法应用于核设施土层地震反应分析中,研究了土层动力特性曲线不确定性的表征方式。Rathje等(2006)验证了RVT方法对美国东部地区的适用性,Ozbey(2006)进行了RVT方法和传统时程方法的对比研究。
RVT方法中地震动输入的FAS可以根据地震学的震源理论给出,也可以通过目标反应谱反算来确定(Brune,1970;Gasparini等,1976)。Tgm的定义可以采用震源理论计算或经验模型,Boore(2003)给出了适用于美国西部的经验公式,Boore等(2015)给出了适用于稳定大陆区域的地壳放大模型和持时模型。本文采用反应谱-幅值谱的相互关系,计算幅值谱,作为基岩地震动输入,进行土层地震反应分析。
3. 不确定性影响分析
为了分析土层模型中动力特性、剪切波速、基岩地震动输入界面位置对分析结果的影响,将变量分离,研究单个变量对评价结果的影响。首先,固定所有参数,以第2章中给出的基岩地震动和zk1的土层剖面模型作为输入,采用RVT方法进行土层地震反应分析,钻孔剖面模型zk1的加速度传递函数和土层地表加速度反应谱如图 4(a)和(b)所示。
由图 4(a)可知,zk1的土层剖面模型改变了地震动的频谱特征,1.4Hz和3.8Hz左右的放大效应非常明显,尤其是1.4Hz处,幅值被放大了接近3倍;高于6Hz部分的幅值降低明显,低于1.3Hz的频段内的幅值基本没有变化,说明zk1剖面模型的特征周期在0.7s左右,0.26s附近频谱的放大主要是近地表砂土层的影响。
由图 4(b)可知,土层地表加速度反应谱在2个周期段内数值较高,一个是0.19—0.27s,表现为较宽的平台段,一个是0.68s附近,呈尖峰状,二者之间则是一个显著的“谷地”。加速度反应谱的特征与加速度传递函数的特征相似,都说明了zk1所代表的土层模型对基岩地震动在2个频段内有明显的放大作用。
3.1 剪切波速
以zk1的剪切波速剖面为均值,采用Robinson等(2006)提出的土层剪切波速不确定性分布作为前提假设,随机生成30个土层模型,采用RVT方法进行土层地震反应分析。钻孔zk1的加速度传递函数和土层地表地震动反应谱如图 5(a)和(b)所示。
图 5(a)中的灰色曲线为每个随机模型的计算结果,黑色实线为所有结果的中值,黑色虚线为所有传递函数曲线的中值加减1倍标准差。将随机模型计算结果的幅值放大系数中值和中值加1倍标准差与剪切波速不变前提下的放大系数进行对比可知,二者的整体趋势一致,基岩上覆土层对低频部分基本没有影响,明显地放大了特征周期频段附近的幅值,降低了高频部分的幅值。不同的是,随机模型的中值在1.6Hz之后迅速降低了基岩地震动的傅立叶幅值谱,没有反映出近地表砂土对基岩地震动的影响。传递函数中值加1倍标准差的结果反映出了2个明显的放大频段,与固定参数模型的传递函数相比,2个放大频段之间的放大系数虽然也相对较小,但是其绝对值大于1,放大频段的上限也扩展到8Hz左右。
图 5(b)中的灰色曲线为每个随机模型的计算结果,黑色实线为所有结果的中值,黑色虚线为中值加减1倍标准差,黑色点虚线为固定参数模型给出的土层地表加速度反应谱。与固定参数模型分析结果相比,剪切波速随机变化模型给出的反应谱平台段较宽,除了放大效应明显的顶峰频段以外,中值加减1倍标准差反应谱基本能够包络固定参数模型分析给出的结果。
3.2 土层动力特性曲线
固定其他参数不变,以图 3给出的剪切模量比-剪应变和阻尼比-剪应变关系曲线作为中值,采用Silva等(1996)提出的土层动力特性曲线不确定性分布作为前提假设,随机生成30个土层剖面模型,采用RVT方法进行土层地震反应分析。加速度传递函数和土层地表加速度反应谱如图 6所示。
图 6(a)中的黑色曲线为土层动力特性曲线随机变化模型的加速度传递函数,红色实线为传递函数的中值,红色虚线为中值加减1倍标准差,红色点虚线为固定参数模型的传递函数。从图中可以看出,土层动力特性曲线随机变化模型的统计结果可以反映土层模型对基岩地震动的影响,放大频段特征与固定参数的结果相似,曲线形状非常相似。固定参数模型的传递函数与参数随机变化模型相比,除了放大频段以外,与两者的中值相近;1.4Hz附近明显高于中值,略低于中值加1倍标准差;3.8—4.8Hz范围内介于中值和中值加1倍标准差之间。
图 6(b)中的黑色曲线为每个土层动力特性曲线随机变化模型的土层地表加速度反应谱,红色实线为反应谱的中值,红色虚线为中值加减1倍标准差,红色点虚线为固定参数模型的土层地表加速度反应谱。从图中可以看出,随机模型的统计结果可以反映土层地表加速度反应谱的形状特征,同样都是在0.18—0.28s范围内表现为明显的平台段,在0.70s附近表现为明显的尖峰。数值上固定参数的反应谱在周期低于0.36s时介于中值和中值加1倍标准差之间,高于0.36s时,固定参数的反应谱基本上与随机模型反应谱的中值一致。
3.3 基岩地震动输入界面
本小节的思路与前2小节相同,随机模拟基岩地震动输入界面的位置,即固定土层波速结构模型,令输入界面的深度在给定范围内均匀分布。加速度传递函数和土层地表加速度反应谱的对比结果如图 7所示。
图 7中的黑色曲线为基岩地震动输入界面深度随机变化模型的加速度传递函数和土层地表加速度反应谱,红色实线为计算结果的中值,红色虚线为中值加减1倍标准差,红色点虚线为固定参数模型的传递函数。从加速度传递函数图中的对比情况可知,固定参数模型的传递函数与地震动输入界面深度随机变化模型传递函数统计结果的形状相似,在1.5Hz附近和3.4—5.4Hz之间高于随机模型传递函数统计结果的中值加1倍标准差。
通过对比土层地表加速度反应谱可知,固定参数模型的土层地表加速度反应谱与地震动输入界面深度随机变化模型反应谱统计结果的形状相似,自振周期低0.34s时,前者介于后者的中值和中值加1倍标准差之间,高于0.34s时,前者基本与后者的中值相一致。
3.4 综合影响
综合土层剖面模型的不确定性,即参数随机变化模型中剪切波速、动力特性、基岩界面位置同时变化,土层地震反应分析的结果如图 8所示。
图 8中的黑色曲线为剪切波速、动力特性、基岩界面位置同时随机变化的加速度传递函数和反应谱,红色实线为计算结果的中值,红色虚线为中值加减1倍标准差,红色点虚线为固定参数模型的传递函数和反应谱。从图 8(a)中可以看出,参数随机变化模型分析结果的中值加1倍标准差可以反映场地对基岩地震动的影响,在1.4Hz附近和3.6Hz附近明显放大了地震动幅值,放大倍数与固定参数模型分析结果相一致。其余频段中,固定模型放大倍数与随机模型分析结果的中值基本一致。
通过图 8(b)可知,参数随机变化模型分析结果统计特征的平台段较宽,中值加1倍标准差可以包络固定参数模型的分析结果。
4. 结论
本文介绍了随机振动理论方法在核设施一维土层地震反应分析工作中的应用,基于某核电厂工程场地实测数据和土层剖面模型参数的不确定性分布,随机生成土层模型,采用随机振动理论方法分析了剪切波速、土层动力特性和基岩地震动输入界面位置的不确定性对核设施一维土层地震反应分析结果的影响。
加速度传递函数结果表明,与固定参数模型相比,采用土层参数随机变化模型和随机振动理论方法可以反映工程场地对地震动的影响。
土层地表加速度反应谱结果表明,土层剖面模型的不确定性中,剪切波速的不确定性对评价结果影响最大,使得加速度反应谱的平台段较宽,随机模型评价结果的中值加1倍标准差,除尖峰位置外,可以包络固定参数模型的评价结果。
土层动力特性曲线和基岩地震动输入界面位置的不确定性对评价结果的影响相当,固定参数模型的分析结果介于土层参数随机变化模型分析结果的中值和中值加1倍标准差之间。
-
表 1 2次地震Ⅵ度及以上各烈度影响范围对比
Table 1. The comparison table of the influence scope of the two earthquakes of degree VI and above
地震名 影响范围/km2 Ⅵ度区面积 Ⅶ度区面积 Ⅷ度区面积 Ⅵ度及以上区域面积 芦山6.1级地震 2777 979 131 3887 泸县6.0级地震 2170 340 103 2613 表 2 伤情程度分类
Table 2. Classification of injury severity
伤情程度 伤情描述 死亡(遇难) 心跳、呼吸完全停止,各种反射消失的临床死亡。 危重 生命体征极不稳定;一个以上的器官系统急性功能障碍或衰竭;随时可能危及生命;下达病危;紧急干预后无改善或预后不良。 重度 生命体征不平稳,有进一步加重趋势,需要立即进行医疗干预,但当前尚未达到“危重”程度的。 中度 生命体征暂时稳定,需住院医疗干预,有可能出现病情加重,但暂不危及生命的。 轻度 生命体征稳定,仅需门、急诊处置或留院观察的。 表 3 2次地震各类伤亡原因人数统计表
Table 3. Statistical table of the number of casualties caused by the two earthquakes
伤情 避震不当致伤/人 因房屋及其附属构件震损致伤/人 次生地质灾害致伤/人 其他偶然原因/人 芦山 泸县 芦山 泸县 芦山 泸县 芦山 泸县 遇难 0 0 0 3 4 0 0 0 危重 0 0 0 0 1 0 0 0 重度 0 1 1 2 2 0 0 0 中度 0 3 0 1 1 0 0 0 轻度 22 37 3 11 10 0 2 0 合计 22 41 4 17 18 0 2 0 -
白仙富, 聂高众, 戴雨芡等, 2021. 基于公里网格单元的地震滑坡人员死亡率评估模型——以2014年鲁甸MS6.5地震为例. 地震研究, 44(1): 87—95 doi: 10.3969/j.issn.1000-0666.2021.01.012Bai X. F. , Nie G. Z. , Dai Y. Q. , et al. , 2021. Modeling and testing earthquake-induced landslide casualty rate based on a grid in a kilometer scale: taking the 2014 Yunnan Ludian MS6.5 Earthquake as a case. Journal of Seismological Research, 44(1): 87—95. (in Chinese) doi: 10.3969/j.issn.1000-0666.2021.01.012 杜方, 2020.2019年地震活动综述. 四川地震, (1): 1—5 doi: 10.13716/j.cnki.1001-8115.2020.01.001Du F. , 2020. Summary of earthquake activities in 2019. Earthquake Research in Sichuan, (1): 1—5. (in Chinese) doi: 10.13716/j.cnki.1001-8115.2020.01.001 李宁, 李岩峰, 李妍, 2013. “4·20”芦山地震高伤亡比例原因初探. 城市与减灾, (6): 17—19 doi: 10.3969/j.issn.1671-0495.2013.06.005Li N. , Li Y. F. , Li Y. , 2013. First exploration on high death rate during Lushan Earthquake, occurred on April 20, 2013. City and Disaster Reduction, (6): 17—19. (in Chinese) doi: 10.3969/j.issn.1671-0495.2013.06.005 李媛媛, 苏国峰, 翁文国等, 2014. 地震人员伤亡评估方法研究. 灾害学, 29(2): 223—227Li Y. Y. , Su G. F. , Weng W. G. , et al. , 2014. A review of researches on seismic casualty estimation. Journal of Catastrophology, 29(2): 223—227. (in Chinese) 南燕云, 刘亢, 高博伟等, 2021.2011—2020年中国大陆地震人员伤亡基本特征分析. 灾害学, 36(4): 42—47 doi: 10.3969/j.issn.1000-811X.2021.04.008Nan Y. Y. , Liu K. , Gao B. W. , et al. , 2021. Characteristic analysis of earthquake-caused casualties in China’s mainland in 2011-2020. Journal of Catastrophology, 36(4): 42—47. (in Chinese) doi: 10.3969/j.issn.1000-811X.2021.04.008 聂高众, 夏朝旭, 范熙伟等, 2021. 基于历史地震数据的建筑物致死性水平研究. 地质科学, 56(4): 1250—1266 doi: 10.12017/dzkx.2021.068Nie G. Z. , Xia C. X. , Fan X. W. , et al. , 2021. Research on the lethal level of buildings based on historical seismic data. Chinese Journal of Geology, 56(4): 1250—1266. (in Chinese) doi: 10.12017/dzkx.2021.068 王波, 郭迅, 宣越, 2020. 基于新视角的震害分析——以四川长宁6.0级地震为例. 震灾防御技术, 15(3): 496—509 doi: 10.11899/zzfy20200303Wang B. , Guo X. , Xuan Y. , 2020. Analysis of earthquake damage from a new perspective: a case study of Changning M6.0 Earthquake in Sichuan province. Technology for Earthquake Disaster Prevention, 15(3): 496—509. (in Chinese) doi: 10.11899/zzfy20200303 魏本勇, 聂高众, 苏桂武等, 2017. 地震灾害埋压人员评估的研究进展. 灾害学, 32(1): 155—159 doi: 10.3969/j.issn.1000-811X.2017.01.027Wei B. Y. , Nie G. Z. , Su G. W. , et al. , 2017. Advances on the assessment methods of buried personnel distribution in earthquake disaster. Journal of Catastrophology, 32(1): 155—159. (in Chinese) doi: 10.3969/j.issn.1000-811X.2017.01.027 吴微微, 2013. 从汶川和芦山地震浅析四川地震次生地质灾害的特点及减灾对策. 震灾防御技术, 8(4): 434—439 doi: 10.3969/j.issn.1673-5722.2013.04.011Wu W. W. , 2013. Characteristics and countermeasures of geological hazards induced in Wenchuan and Lushan earthquakes, Sichuan province. Technology for Earthquake Disaster Prevention, 8(4): 434—439. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.04.011 肖本夫, 申源, 陈维锋等, 2020. 基于MINA框架的应急救助与地震灾情管理平台设计与实现. 震灾防御技术, 15(4): 836—845 doi: 10.11899/zzfy20200418Xiao B. F. , Shen Y. , Chen W. F. , et al. , 2020. Design and implementation of management platform of emergency assistance and seismic disaster based on the MINA framework. Technology for Earthquake Disaster Prevention, 15(4): 836—845. (in Chinese) doi: 10.11899/zzfy20200418 宴金旭, 叶肇恒, 郑逸等, 2020. 四川荣县MS4.7、MS 4.3、MS 4.9地震房屋震害特征和人员伤亡分析. 地震工程学报, 42(4): 1019—1023, 1034Yan J. X. , Ye Z. H. , Zheng Y. , et al. , 2020. Investigation of building damage characteristics and human casualties in relation to theMS 4.7, MS 4.3, andMS 4.9 earthquakes occurring in Rong County, Sichuan province. China Earthquake Engineering Journal, 42(4): 1019—1023, 1034. (in Chinese) 闫佳琦, 陈相兆, 孙柏涛, 2021. 地震人员伤亡评估方法及损失评估系统综述. 工程力学, 38(12): 1—16 doi: 10.6052/j.issn.1000-4750.2020.11.0861Yan J. Q. , Chen X. Z. , Sun B. T. , 2021. Review of estimation methods and systems used to predict earthquake casualties. Engineering Mechanics, 38(12): 1—16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0861 张凌, 谭璇, 宋冬梅等, 2019. 基于马尔科夫随机场的单时相震害影像受损建筑物识别方法. 地震地质, 41(5): 1273—1288 doi: 10.3969/j.issn.0253-4967.2019.05.014Zhang L. , Tan X. , Song D. M. , et al. , 2019. Study on the MRF-based method for damaged buildings extraction from the single-phase seismic image. Seismology and Geology, 41(5): 1273—1288. (in Chinese) doi: 10.3969/j.issn.0253-4967.2019.05.014 郑山锁, 张睿明, 陈飞等, 2019. 地震人员伤亡评估理论及应用研究. 世界地震工程, 35(1): 87—96Zheng S. S. , Zhang R. M. , Chen F. , et al. , 2019. Research on theory and application of earthquake casualty estimates. World Earthquake Engineering, 35(1): 87—96. (in Chinese) 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Committee, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese) 中华人民共和国卫生部, 2006. 国家突发公共事件医疗卫生救援应急预案. 中国食品卫生杂志, 18(4): 373—378. 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) 期刊类型引用(3)
1. 韩晓健,徐晨栋,陈锡武,杨伟. 基于边缘计算的建筑振动监测传感器应用研究. 江苏建筑. 2024(02): 24-28 . 百度学术
2. 李亮,大久保孝昭,杨建江,张大英. 东日本大地震后某校舍抗震加固改造与效果评估实验研究. 噪声与振动控制. 2024(03): 246-252 . 百度学术
3. 朱琳,赵言凯,马彩霞. 基于LS-SVM的水工闸门启闭机油缸振动监测研究. 中国机械. 2024(35): 95-98 . 百度学术
其他类型引用(6)
-