Static-dynamic Response Analysis of Upright Wing Wall and Drainage Immersed Tube Cross System of NPP Considering SSI Effect
-
摘要: 某核电厂的联合泵房两侧直立翼墙以及排水沉管为交叉设计,且属抗震I类物项,因此,考虑土-交叉体系结构动力相互作用是抗震安全性评价的关键技术问题。以实际核电厂条件为背景,基于ANSYS分析平台建立了翼墙-沉管交叉体系-地基静动力分析模型,运用UPFs创建的粘弹性边界单元考虑无限地基辐射阻尼影响及地震动的输入,并精细化模拟地基材料的力学特性及交叉体系的空间分布形态,开展了静动力荷载联合作用下翼墙-沉管交叉体系的响应分析,探究交叉体系结构的应力、变形及加速度峰值等响应的变化规律。计算结果表明:直立翼墙与排水沉管交叉部位出现了应力集中现象,翼墙结构的竖向加速度响应与竖向及顺沉管水平向位移变形有较大变化,沉管在交叉部位的响应也有显著增加。研究成果可为核电厂取水工程构筑物的类似交叉体系设计提供技术参考。Abstract: The upright wing walls on both sides of the joint pump house and the drainage immersed tube of a nuclear power plant are crossed design and belong to the seismic class I items, therefore, considering that the soil-crossing system structural dynamic interaction is a key technical issue for seismic safety evaluation. Based on the actual nuclear power plant site conditions, the ANSYS analysis platform is used to establis h a hydrostatic analysis model of the wing wall-immersed tube crossover system-foundation, through the viscoelastic boundary units created by running UPFs to consider the influence of infinite foundation radiation damping and the input of ground vibration, and refine the simulation of the mechanical properties of the foundation materials and the spatial distribution pattern of the crossover system. The response analysis of the crossed wing wall-immersed tube system was carried out to investigate the changes of stress, deformation and acceleration peak of the crossed system. The calculation results show that the stress concentration phenomenon occurs at the intersection of the upright wing wall and the drainage immersed tube, and the vertical acceleration response of the wing wall structure had a great change from the vertical and horizontal displacement deformation of the drainage immersed tube, and the response of the immersed tube in the intersection had also increased significantly. The research results can provide technical reference for the design of similar crossover systems for nuclear power plant water intake engineering structures.
-
Key words:
- Nuclear power plants /
- Upright wing walls /
- Drainage immersed tube /
- SSI /
- Static-dynamic analysis
-
表 1 三维抗震模型分析材料计算参数
Table 1. The material calculation parameters of 3D seismic model analyzes
材料类型 材料密度 /kg·m−3 动弹性模Ed/MPa 静弹性模量E/MPa 动泊松比μd 泊松比μ 阻尼比 混凝土C40 2500 42250 32500 0.2 0.2 0.05 堤心石 2000 400 100 0.42 0.33 0.05 碎石、二片石垫层 2100 400 100 0.42 0.33 0.05 开山石碴料 2000 350 50 0.43 0.33 0.05 厂区回填料 2000 350 50 0.43 0.33 0.05 粉质黏土 1990 390 24.9 0.43 0.33 0.05 中风化花岗岩 2610 13230 16150 0.35 0.25 0.05 微风化花岗岩 2640 31860 25010 0.30 0.25 0.05 -
陈少林, 郭琪超, 周国良, 2020. 核电结构土—结相互作用分析分区混合计算方法. 力学学报, 52(1): 258—282 doi: 10.6052/0459-1879-19-271Chen S. L. , Guo Q. C. , Zhou G. L. , 2020. Partitioned hybrid method for soil-structure interaction analysis of nuclear power structure. Chinese Journal of Theoretical and Applied Mechanics, 52(1): 258—282. (in Chinese) doi: 10.6052/0459-1879-19-271 金煜皓, 尹训强, 王桂萱, 2015. 无限地基辐射阻尼对核岛厂房结构地震响应的影响. 工程抗震与加固改造, 37(5): 99—105 doi: 10.16226/j.issn.1002-8412.2015.05.017Jin Y. H. , Yin X. Q. , Wang G. X. , 2015. Effects of foundation radiation damping on seismic response of nuclear island buildings. Earthquake Resistant Engineering and Retrofitting, 37(5): 99—105. (in Chinese) doi: 10.16226/j.issn.1002-8412.2015.05.017 孔宪京, 林皋, 2013. 核电厂工程结构抗震研究进展. 中国工程科学, 15(4): 62—74 doi: 10.3969/j.issn.1009-1742.2013.04.013Kong X. J. , Lin G. , 2013. Research advances on engineering structural seismic safety of nuclear power plant. Strategic Study of CAE, 15(4): 62—74. (in Chinese) doi: 10.3969/j.issn.1009-1742.2013.04.013 李浩然, 尹训强, 王桂萱, 2017. 基于UPFs的粘弹性人工边界单元及地震动输入方法研究. 世界地震工程, 33(2): 24—32Li H. R. , Yin X. Q. , Wang G. X. , 2017. Research on UPFs-based viscoelastic artificial boundary element and ground motion input method. World Earthquake Engineering, 33(2): 24—32. (in Chinese) 尹训强, 李浩然, 王桂萱, 2016. 基于极大初始时间步法的非线性静动力联合分析. 地震工程与工程振动, 36(2): 30—35 doi: 10.13197/j.eeev.2016.02.30.yinxq.005Yin X. Q. , Li H. R. , Wang G. X. , 2016. Nonlinear static-dynamic coupling analysis based on maximum initial time-step method. Earthquake Engineering and Engineering Dynamics, 36(2): 30—35. (in Chinese) doi: 10.13197/j.eeev.2016.02.30.yinxq.005 尹训强, 邱义波, 王桂萱, 2020. 复杂非均质场地条件下考虑桩-土相互作用的核电厂取水构筑物抗震安全分析. 工程抗震与加固改造, 42(5): 86—93, 105Yin X. Q. , Qiu Y. B. , Wang G. X. , 2020. Analysis of nuclear power plant water intake structure-pile-soil dynamic interaction under complex heterogeneous site conditions. Earthquake Resistant Engineering and Retrofitting, 42(5): 86—93, 105. (in Chinese) 赵密, 王鑫, 钟紫蓝等, 2020. P波斜入射下非基岩场地中核岛结构地震响应规律研究. 工程力学, 37(12): 43—51, 77 doi: 10.6052/j.issn.1000-4750.2019.12.0744Zhao M. , Wang X. , Zhong Z. L. , et al. , 2020. Study on seismic responses of nuclear island structure in non-bedrock site under obliquely-incidence of P waves. Engineering Mechanics, 37(12): 43—51, 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0744 中华人民共和国住房和城乡建设部, 2019. GB 50267—2019 核电厂抗震设计标准. 北京: 中国计划出版社, 21—24Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2019. GB 50267—2019 Standard for seismic design of nuclear power plants. Beijing: China Planning Press, 21—24. (in Chinese) Onitsuka S. , Iijima T. , Yamada T. , et al. , 2019. Seismic analysis of nuclear power plants by using three-dimensional finite element models: a review. Journal of Nuclear Science and Technology, 56(1): 1—16. doi: 10.1080/00223131.2018.1532846 Wang X. X. , Zhou Q. , Zhu K. X. , et al. , 2017. Analysis of seismic soil-structure interaction for a nuclear power plant (HTR-10). Science and Technology of Nuclear Installations, 2017: 2358403. Westergaard H. M. , 1933. Water pressures on dams during earthquakes. Transactions of the American Society of Civil Engineers, 98(2): 418—433. doi: 10.1061/TACEAT.0004496