• ISSN 1673-5722
  • CN 11-5429/P

考虑SSI效应的核电厂直立翼墙与排水沉管交叉体系静动力响应分析

尹训强 付忠余

尹训强,付忠余,2022. 考虑SSI效应的核电厂直立翼墙与排水沉管交叉体系静动力响应分析. 震灾防御技术,17(4):666−673. doi:10.11899/zzfy20220406. doi: 10.11899/zzfy20220406
引用本文: 尹训强,付忠余,2022. 考虑SSI效应的核电厂直立翼墙与排水沉管交叉体系静动力响应分析. 震灾防御技术,17(4):666−673. doi:10.11899/zzfy20220406. doi: 10.11899/zzfy20220406
Yin Xunqiang, Fu Zhongyu. Static-dynamic Response Analysis of Upright Wing Wall and Drainage Immersed Tube Cross System of NPP Considering SSI Effect[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 666-673. doi: 10.11899/zzfy20220406
Citation: Yin Xunqiang, Fu Zhongyu. Static-dynamic Response Analysis of Upright Wing Wall and Drainage Immersed Tube Cross System of NPP Considering SSI Effect[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 666-673. doi: 10.11899/zzfy20220406

考虑SSI效应的核电厂直立翼墙与排水沉管交叉体系静动力响应分析

doi: 10.11899/zzfy20220406
基金项目: 国家自然科学基金项目(52108437);大连市青年科技之星项目(2020RQ057)
详细信息
    作者简介:

    尹训强,男,生于1986年。博士,副教授,硕士研究生导师。主要从事工程抗震工作。E-mail:yinxunqiang@dlu.edu.cn

Static-dynamic Response Analysis of Upright Wing Wall and Drainage Immersed Tube Cross System of NPP Considering SSI Effect

  • 摘要: 某核电厂的联合泵房两侧直立翼墙以及排水沉管为交叉设计,且属抗震I类物项,因此,考虑土-交叉体系结构动力相互作用是抗震安全性评价的关键技术问题。以实际核电厂条件为背景,基于ANSYS分析平台建立了翼墙-沉管交叉体系-地基静动力分析模型,运用UPFs创建的粘弹性边界单元考虑无限地基辐射阻尼影响及地震动的输入,并精细化模拟地基材料的力学特性及交叉体系的空间分布形态,开展了静动力荷载联合作用下翼墙-沉管交叉体系的响应分析,探究交叉体系结构的应力、变形及加速度峰值等响应的变化规律。计算结果表明:直立翼墙与排水沉管交叉部位出现了应力集中现象,翼墙结构的竖向加速度响应与竖向及顺沉管水平向位移变形有较大变化,沉管在交叉部位的响应也有显著增加。研究成果可为核电厂取水工程构筑物的类似交叉体系设计提供技术参考。
  • 图  1  翼墙-沉管交叉体系平面布置图

    Figure  1.  Plan layout of wing wall-immersed tube crossover system

    图  2  翼墙-沉管交叉体系-地基静动力分析模型

    Figure  2.  Wing wall-immersed tube crossover system-soil static and dynamic analysis model

    图  3  交叉体系-土相互作用分析模型

    Figure  3.  Analytical model for crossover system-soil interactions

    图  4  翼墙与沉管结构有限元模型

    Figure  4.  Finite element model of wing wall and immersed tube structure

    图  5  输入地震动时程曲线

    Figure  5.  Time history curve of the seismic wave

    图  6  交叉体系结构应力云图(单位:兆帕)

    Figure  6.  The principal stress of crossover system(Unit: MPa)

    图  7  交叉体系加速度监测点分布

    Figure  7.  Crossover system acceleration monitoring point distribution

    图  8  直立翼墙加速度峰值沿高程分布

    Figure  8.  Peak acceleration distribution along the elevation of the upright wing wall

    图  9  排水沉管加速度峰值顺管线分布

    Figure  9.  Peak acceleration distribution along the tube line of drainage immersed tube

    图  10  交叉体系位移变形分布云图(单位:毫米)

    Figure  10.  Cloud map of displacement deformation distribution of crossover system(Unit: mm)

    表  1  三维抗震模型分析材料计算参数

    Table  1.   The material calculation parameters of 3D seismic model analyzes

    材料类型 材料密度 /kg·m−3 动弹性模Ed/MPa 静弹性模量E/MPa 动泊松比μd 泊松比μ 阻尼比
    混凝土C40 2500 42250 32500 0.2 0.2 0.05
    堤心石 2000 400 100 0.42 0.33 0.05
    碎石、二片石垫层 2100 400 100 0.42 0.33 0.05
    开山石碴料 2000 350 50 0.43 0.33 0.05
    厂区回填料 2000 350 50 0.43 0.33 0.05
    粉质黏土 1990 390 24.9 0.43 0.33 0.05
    中风化花岗岩 2610 13230 16150 0.35 0.25 0.05
    微风化花岗岩 2640 31860 25010 0.30 0.25 0.05
    下载: 导出CSV
  • 陈少林, 郭琪超, 周国良, 2020. 核电结构土—结相互作用分析分区混合计算方法. 力学学报, 52(1): 258—282 doi: 10.6052/0459-1879-19-271

    Chen S. L. , Guo Q. C. , Zhou G. L. , 2020. Partitioned hybrid method for soil-structure interaction analysis of nuclear power structure. Chinese Journal of Theoretical and Applied Mechanics, 52(1): 258—282. (in Chinese) doi: 10.6052/0459-1879-19-271
    金煜皓, 尹训强, 王桂萱, 2015. 无限地基辐射阻尼对核岛厂房结构地震响应的影响. 工程抗震与加固改造, 37(5): 99—105 doi: 10.16226/j.issn.1002-8412.2015.05.017

    Jin Y. H. , Yin X. Q. , Wang G. X. , 2015. Effects of foundation radiation damping on seismic response of nuclear island buildings. Earthquake Resistant Engineering and Retrofitting, 37(5): 99—105. (in Chinese) doi: 10.16226/j.issn.1002-8412.2015.05.017
    孔宪京, 林皋, 2013. 核电厂工程结构抗震研究进展. 中国工程科学, 15(4): 62—74 doi: 10.3969/j.issn.1009-1742.2013.04.013

    Kong X. J. , Lin G. , 2013. Research advances on engineering structural seismic safety of nuclear power plant. Strategic Study of CAE, 15(4): 62—74. (in Chinese) doi: 10.3969/j.issn.1009-1742.2013.04.013
    李浩然, 尹训强, 王桂萱, 2017. 基于UPFs的粘弹性人工边界单元及地震动输入方法研究. 世界地震工程, 33(2): 24—32

    Li H. R. , Yin X. Q. , Wang G. X. , 2017. Research on UPFs-based viscoelastic artificial boundary element and ground motion input method. World Earthquake Engineering, 33(2): 24—32. (in Chinese)
    尹训强, 李浩然, 王桂萱, 2016. 基于极大初始时间步法的非线性静动力联合分析. 地震工程与工程振动, 36(2): 30—35 doi: 10.13197/j.eeev.2016.02.30.yinxq.005

    Yin X. Q. , Li H. R. , Wang G. X. , 2016. Nonlinear static-dynamic coupling analysis based on maximum initial time-step method. Earthquake Engineering and Engineering Dynamics, 36(2): 30—35. (in Chinese) doi: 10.13197/j.eeev.2016.02.30.yinxq.005
    尹训强, 邱义波, 王桂萱, 2020. 复杂非均质场地条件下考虑桩-土相互作用的核电厂取水构筑物抗震安全分析. 工程抗震与加固改造, 42(5): 86—93, 105

    Yin X. Q. , Qiu Y. B. , Wang G. X. , 2020. Analysis of nuclear power plant water intake structure-pile-soil dynamic interaction under complex heterogeneous site conditions. Earthquake Resistant Engineering and Retrofitting, 42(5): 86—93, 105. (in Chinese)
    赵密, 王鑫, 钟紫蓝等, 2020. P波斜入射下非基岩场地中核岛结构地震响应规律研究. 工程力学, 37(12): 43—51, 77 doi: 10.6052/j.issn.1000-4750.2019.12.0744

    Zhao M. , Wang X. , Zhong Z. L. , et al. , 2020. Study on seismic responses of nuclear island structure in non-bedrock site under obliquely-incidence of P waves. Engineering Mechanics, 37(12): 43—51, 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0744
    中华人民共和国住房和城乡建设部, 2019. GB 50267—2019 核电厂抗震设计标准. 北京: 中国计划出版社, 21—24

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2019. GB 50267—2019 Standard for seismic design of nuclear power plants. Beijing: China Planning Press, 21—24. (in Chinese)
    Onitsuka S. , Iijima T. , Yamada T. , et al. , 2019. Seismic analysis of nuclear power plants by using three-dimensional finite element models: a review. Journal of Nuclear Science and Technology, 56(1): 1—16. doi: 10.1080/00223131.2018.1532846
    Wang X. X. , Zhou Q. , Zhu K. X. , et al. , 2017. Analysis of seismic soil-structure interaction for a nuclear power plant (HTR-10). Science and Technology of Nuclear Installations, 2017: 2358403.
    Westergaard H. M. , 1933. Water pressures on dams during earthquakes. Transactions of the American Society of Civil Engineers, 98(2): 418—433. doi: 10.1061/TACEAT.0004496
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  14
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回