• ISSN 1673-5722
  • CN 11-5429/P

地基土-反应堆厂房-核电辅助厂房结构相互作用体系地震响应分析

王波 陈少林 高雷 唐晖

王波,陈少林,高雷,唐晖,2022. 地基土-反应堆厂房-核电辅助厂房结构相互作用体系地震响应分析. 震灾防御技术,17(4):651−665. doi:10.11899/zzfy20220405. doi: 10.11899/zzfy20220405
引用本文: 王波,陈少林,高雷,唐晖,2022. 地基土-反应堆厂房-核电辅助厂房结构相互作用体系地震响应分析. 震灾防御技术,17(4):651−665. doi:10.11899/zzfy20220405. doi: 10.11899/zzfy20220405
Wang Bo, Chen ShaoLin, Gao Lei, Tang Hui. Earthquake Response Analysis of Soil-reactor Plant-nuclear power Auxiliary Plant Interaction System[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 651-665. doi: 10.11899/zzfy20220405
Citation: Wang Bo, Chen ShaoLin, Gao Lei, Tang Hui. Earthquake Response Analysis of Soil-reactor Plant-nuclear power Auxiliary Plant Interaction System[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 651-665. doi: 10.11899/zzfy20220405

地基土-反应堆厂房-核电辅助厂房结构相互作用体系地震响应分析

doi: 10.11899/zzfy20220405
基金项目: 国家自然科学基金(51978337、U2039209);华龙一号及在役核电机组关键技术装备攻关工程项目(2003-105)
详细信息
    作者简介:

    王波,男,生于1995年。硕士。主要从事地震工程研究。E-mail:814799207@qq.com

    通讯作者:

    陈少林,男,生于1974年。教授,博士生导师。主要从事地震工程研究。E-mail:iemcsl@nuaa.edu.cn

Earthquake Response Analysis of Soil-reactor Plant-nuclear power Auxiliary Plant Interaction System

  • 摘要: 土-结构相互作用分析是核电结构抗震设计的重要环节,考虑到附属厂房可能导致反应堆厂房处于最不利工况状态,对地基土-反应堆厂房-核电辅助厂房结构相互作用体系地震响应进行研究。基于PASSI算法,提出显-隐式单元层计算方法,实现显、隐式交替计算,保持高效性的同时,提高计算稳定性。通过场地分析算例和土-结构相互作用分析算例,与ABAQUS软件计算结果进行对比,验证计算方法的可行性。以某核电站为对象,分析同一基础上相邻厂房对反应堆厂房地震响应的影响。研究结果表明,在基岩场地上,安全厂房通过基础和场地对反应堆厂房的作用较小,对反应堆厂房地震响应的影响较小;地震动输入下,燃料厂房和电器厂房加大了反应堆厂房位移峰值,减小了反应堆厂房加速度反应谱峰值,并使反应堆厂房顶部点加速度反应谱峰值向高频移动;与反应堆厂房共用同一基础的辅助厂房,应与反应堆厂房作为整体进行地震响应分析,至少应将与反应堆厂房相连的辅助厂房作为整体进行分析。
  • 图  1  SSI系统分析模型

    Figure  1.  Soil-structure interaction system

    图  2  显-隐式数据交互示意

    Figure  2.  Explicit-implicit data interaction

    图  3  脉冲波位移时程和频谱曲线

    Figure  3.  Displacement time history and spectrum of SV/P pulse wave

    图  4  ABAQUS软件中黏弹性人工边界及监测点示意

    Figure  4.  Viscoelastic artificial boundary and monitoring points in ABAQUS

    图  5  SV波和P波垂直入射场地位移时程曲线

    Figure  5.  Site response of SV and P wave

    图  6  土-结构相互作用模型

    Figure  6.  Soil-structure interaction model

    图  7  结构位移时程曲线

    Figure  7.  Displacement time history of nuclear power plant

    图  8  核电站平面布置示意

    Figure  8.  Floor plan of nuclear power plant

    图  9  反应堆厂房监测点分布示意

    Figure  9.  Monitoring points of reactor plant

    图  10  地震动加速度时程与反应谱曲线

    Figure  10.  Ground motion acceleration time history and response spectrum

    图  11  核电站4种工况模型

    Figure  11.  Four working conditions model for nuclear power plant

    图  12  反应堆厂房监测点位移时程曲线

    Figure  12.  Displacement time history of each monitoring point on the reactor plant

    图  13  反应堆厂房监测点加速度反应谱

    Figure  13.  Acceleration response spectrum of monitoring point on the reactor plant

    图  14  反应堆厂房监测点加速度反应谱

    Figure  14.  Acceleration response spectrum of monitoring point on the reactor plant

    表  1  土体参数

    Table  1.   Soil parameters

    材料厚度/m弹性模量/GPa泊松比密度/kg·m−3剪切波速/m·s−1压缩波速/m·s−1
    软土500.1080.351 000200416
    下载: 导出CSV

    表  2  显-隐式单元层计算方法和ABAQUS软件计算效率

    Table  2.   PASSI and ABAQUS calculation efficiency

    算例单元数/个节点数/个自由度数/个
    显-隐式单元层计算方法
    计算时间/min
    ABAQUS软件
    计算时间/min
    场地80 00085 731257 1934106
    土-结构相互作用80 01085 771257 31333106
    注:自由度数=节点数*3(每个节点自由度个数)
    下载: 导出CSV

    表  3  核电站结构材料参数

    Table  3.   Material parameters of nuclear power plant

    编号材料结构弹性模量/GPa泊松比密度/kg·m−3
    1C30厂房/基础32.50.22 400
    2C40内/外壳36.00.22 450
    下载: 导出CSV

    表  4  核电站厂址参数

    Table  4.   Soil parameters of nuclear power plant site

    材料厚度/m弹性模量/GPa泊松比密度/kg·m−3剪切波速/m·s−1压缩波速/m·s−1
    岩石6046.90.262 6502 6734 639
    下载: 导出CSV

    表  5  模态分析

    Table  5.   Modality analysis

    振型Case1Case2Case3Case4
    频率/Hz振型参与系数频率/Hz振型参与系数频率/Hz振型参与系数频率/Hz振型参与系数
    13.006 690.186 263.006 690.186 194.016 961.000 003.726 480.426 64
    23.007 491.000 003.007 491.000 004.068 740.277 893.861 540.413 38
    34.078 570.540 833.725 200.677 044.114 500.094 623.885 430.002 48
    44.096 080.381 573.858 000.683 884.210 240.482 594.017 181.000 00
    55.488 440.002 043.885 280.009 754.739 490.029 304.068 750.275 37
    65.513 010.001 434.078 570.540 695.472 460.169 674.114 530.097 12
    75.540 460.003 314.096 080.381 505.566 560.002 174.210 380.480 55
    85.572 030.004 844.559 210.068 575.610 470.012 114.560 350.045 69
    95.629 190.003 165.439 430.064 355.762 070.080 104.739 620.029 71
    105.658 220.010 715.488 440.002 056.163 020.037 355.441 090.042 47
    116.426 340.004 545.513 010.001 436.470 850.006 885.472 660.167 66
    126.471 340.015 755.540 460.003 316.496 260.389 725.566 560.002 12
    136.496 200.598 365.572 030.004 826.615 100.003 045.610 470.011 96
    146.614 210.001 585.629 190.003 176.875 020.134 965.702 480.044 00
    156.875 130.207 355.658 220.010 727.121 850.000 715.762 180.079 50
    167.117 110.000 875.698 290.070 077.183 560.005 666.163 160.037 35
    177.171 630.005 926.426 340.004 557.186 370.071 546.470 850.006 79
    187.186 590.070 526.471 340.015 757.228 460.359 016.496 260.386 15
    197.218 460.014 676.496 200.598 317.349 150.546 566.615 100.003 03
    207.235 540.000 056.614 210.001 597.778 060.042 946.875 020.133 73
    217.778 050.071 156.875 130.207 347.984 620.026 007.121 850.000 71
    227.984 600.042 407.117 110.000 878.112 550.020 307.183 560.005 58
    238.112 540.033 217.171 630.005 938.241 690.004 937.186 370.070 85
    248.241 670.008 197.186 590.070 518.355 480.012 787.228 550.356 06
    258.355 470.020 327.218 460.014 678.603 980.003 847.349 130.541 36
    268.457 000.005 007.235 540.000 048.879 180.000 607.778 060.042 54
    278.603 970.006 277.778 050.071 158.980 480.011 407.984 620.025 76
    288.977 700.014 417.984 600.042 399.092 810.031 828.112 550.020 11
    299.092 800.051 768.112 540.033 219.161 850.066 658.241 690.004 88
    309.229 790.118 338.241 670.008 199.229 870.071 678.355 480.012 67
    319.414 480.015 028.355 470.020 329.414 480.009 218.603 980.003 80
    329.518 820.077 798.457 000.005 049.450 980.026 218.879 180.000 58
    339.698 920.086 258.603 970.006 279.518 870.045 528.980 480.011 29
    349.776 220.456 368.977 700.014 429.787 150.014 039.092 810.031 53
    359.841 210.024 009.092 800.051 769.841 170.020 969.161 810.065 98
    下载: 导出CSV
  • 曹金凤, 王旭春, 孔亮, 2011. Python语言在Abaqus中的应用. 北京: 机械工业出版社.
    韩冰, 陈少林, 梁建文, 2019. 结构-土-结构动力相互作用对结构系统频率的影响. 地震工程学报, 41(6): 1574—1580

    Han B. , Chen S. L. , Liang J. W. , 2019. Effects of structure-soil-structure dynamic interaction on the frequency of structural systems. China Earthquake Engineering Journal, 41(6): 1574—1580. (in Chinese)
    何涛, 姜南, 2020. 土-相邻结构相互作用子结构振动台试验研究. 振动与冲击, 39(4): 207—214

    He T. , Jiang N. , 2020. A substructure shaking table test of soil-adjacent structure interaction. Journal of Vibration and Shock, 39(4): 207—214. (in Chinese)
    李培振, 严克非, 徐鹏, 2014. 地震下考虑群体效应的高层建筑土-结构相互作用研究. 土木工程学报, 47(S1): 1—5

    Li P. Z. , Yan K. F. , Xu P. , 2014. Study on dynamic interaction between soil and group of high-rise buildings under seismic excitation. China Civil Engineering Journal, 47(S1): 1—5. (in Chinese)
    廖振鹏, 2002. 工程波动理论导论. 2版. 北京: 科学出版社.

    Liao Z. P. , 2002. Introduction to wave motion theories in engineering. 2 nd ed. Beijing: Science Press. (in Chinese)
    刘晶波, 王振宇, 杜修力等, 2005. 波动问题中的三维时域粘弹性人工边界. 工程力学, 22(6): 46—51 doi: 10.3969/j.issn.1000-4750.2005.06.008

    Liu J. B. , Wang Z. Y. , Du X. L. , et al. , 2005. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems. Engineering Mechanics, 22(6): 46—51. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.008
    刘晶波, 杜义欣, 闫秋实, 2007. 粘弹性人工边界及地震动输入在通用有限元软件中的实现. 见: 第三届全国防震减灾工程学术研讨会论文集. 南京: 中国土木工程学会, 43—48.
    刘晶波, 宝鑫, 李述涛等, 2022. 采用黏弹性人工边界时显式算法稳定性条件. 爆炸与冲击, 42(3): 034201

    Liu J. B. , Bao X. , Li S. T. , et al. , 2022. Stability conditions of explicit algorithms when using viscoelastic artificial boundaries. Explosion and Shock Waves, 42(3): 034201. (in Chinese)
    柳玉印, 尹训强, 2018. 考虑结构—土—结构动力相互作用的重力坝地震响应分析. 水利水电技术, 49(10): 52—58

    Liu Y. Y. , Yin X. Q. , 2018. Structure-soil-structure dynamic interaction-considered seismic response analysis of gravity dam. Water Resources and Hydropower Engineering, 49(10): 52—58. (in Chinese)
    苏景鹤, 江丙云, 2016. ABAQUS Python二次开发攻略. 北京: 人民邮电出版社.
    田彼得, 俞载道, 1987. 结构-土-结构相互作用体系的动力分析. 同济大学学报, 15(2): 157—168

    Tian B. D. , Yu Z. D. , 1987. Dynamic analysis of structure-soil-structure interaction. Journal of Tongji University, 15(2): 157—168. (in Chinese)
    王飞, 宋志强, 刘昱杰等, 2018. 基于ABAQUS无限元的静-动力统一人工边界研究. 水资源与水工程学报, 29(6): 170—177

    Wang F. , Song Z. Q. , Liu Y. J. , et al. , 2018. Research on static-dynamic unified artificial boundary based on ABAQUS infinite element. Journal of Water Resources and Water Engineering, 29(6): 170—177. (in Chinese)
    王国波, 袁明智, 苗雨, 2018. 结构-土-结构相互作用体系地震响应研究综述. 岩土工程学报, 40(5): 837—847

    Wang G. B. , Yuan M. Z. , Miao Y. , 2018. Review of seismic response of structure-soil-structure interaction system. Chinese Journal of Geotechnical Engineering, 40(5): 837—847. (in Chinese)
    应稼年, 王荣昌, 俞载道, 1995. 地基土-桩基础-核电站辅助厂房结构相互作用体系的地震响应分析. 地震工程与工程振动, 15(1): 44—52 doi: 10.13197/j.eeev.1995.01.006

    Ying J. N. , Wang R. C. , Yu Z. D. , 1995. Earthquake response analysis of soil-pile-nuclear power station auxiliary workshop structure interaction system. Earthquake Engineering and Engineering Vibration, 15(1): 44—52. (in Chinese) doi: 10.13197/j.eeev.1995.01.006
    中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019. GB 50267—2019 核电厂抗震设计标准. 北京: 中国计划出版社.

    Ministry of Housing and Urban Rural Development of the People's Republic of China, State Administration of Market Supervision and Administration, 2019. GB 50267—2019 Standard for seismic design of nuclear power plants. Beijing: China Planning Press. (in Chinese)
    Aldaikh H. , Alexander N. A. , Ibraim E. , et al. , 2015. Two dimensional numerical and experimental models for the study of structure–soil–structure interaction involving three buildings. Computers & Structures, 150: 79—91.
    Aldaikh H. , Alexander N. A. , Ibraim E. , et al. , 2016. Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI). Soil Dynamics and Earthquake Engineering, 89: 219—232. doi: 10.1016/j.soildyn.2016.08.012
    ASCE, Seismic analysis of safety-related nuclear structures, ASCE/SEI 4-16. 2016, American Society of Civil Engineers: New York
    Belytschko T. , Mullen R. , 1978. Stability of explicit-implicit mesh partitions in time integration. International Journal for Numerical Methods in Engineering, 12(10): 1575—1586. doi: 10.1002/nme.1620121008
    Belytschko T., Yen H. J., Mullen R., 1979. Mixed methods for time integration. Computer Methods in Applied Mechanics and Engineering, 17—18: 259—275.
    Belytschko T. , Smolinski P. , Liu W. K. , 1985. Stability of multi-time step partitioned integrators for first-order finite element systems. Computer Methods in Applied Mechanics and Engineering, 49(3): 281—297. doi: 10.1016/0045-7825(85)90126-4
    Chen S. L. , Lv H. , Zhou G. L. , 2022. Partitioned analysis of soil-structure interaction for Nuclear Island Buildings. Earthquake Engineering & Structural Dynamics, 51(10): 2220—2247.
    Ghandil M. , Behnamfar F. , Vafaeian M. , 2016. Dynamic responses of structure–soil–structure systems with an extension of the equivalent linear soil modeling. Soil Dynamics and Earthquake Engineering, 80: 149—162. doi: 10.1016/j.soildyn.2015.10.014
    Kitada Y., Hirotani T., Iguchi M., 1999. Models test on dynamic structure–structure interaction of nuclear power plant buildings. Nuclear Engineering and Design, 192(2—3): 205—216.
    Lee T. H. , Wesley D. A. , 1973 a. Soil-structure interaction of nuclear reactor structures considering through-soil coupling between adjacent structures. Nuclear Engineering and Design, 24(3): 374—387. doi: 10.1016/0029-5493(73)90007-1
    Lee T. H., Wesley D. A., 1973b. Influence of through-soil coupling between adjacent structures on seismic response of nuclear reactors. In: Proceedings of the Second International Conference on Structural Mechanics in Reactor Technology. Berlin: IASMiRT, 2—9.
    Lehmann L. , Antes H. , 2001. Dynamic structure-soil-structure interaction applying the Symmetric Galerkin Boundary Element Method (SGBEM). Mechanics Research Communications, 28(3): 297—304. doi: 10.1016/S0093-6413(01)00177-X
    Lou M. L. , Wang H. F. , Chen X. , et al. , 2011. Structure-soil-structure interaction: literature review. Soil Dynamics and Earthquake Engineering, 31(12): 1724—1731. doi: 10.1016/j.soildyn.2011.07.008
    Luco J. E. , Contesse L. , 1973. Dynamic structure-soil-structure interaction. Bulletin of the Seismological Society of America, 63(4): 1289—1303. doi: 10.1785/BSSA0630041289
    Matthees W. , Magiera G. , 1982. A sensitivity study of seismic structure-soil-structure interaction problems for nuclear power plants. Nuclear Engineering and Design, 73(3): 343—363. doi: 10.1016/0029-5493(82)90011-5
    Murakami H. , Luco J. E. , 1977. Seismic response of a periodic array of structures. Journal of the Engineering Mechanics Division, 103(5): 965—977. doi: 10.1061/JMCEA3.0002286
    Wang J. S. , Guo T. , Du Z. Y. , 2022. Experimental and numerical study on the influence of dynamic structure-soil-structure interaction on the responses of two adjacent idealized structural systems. Journal of Building Engineering, 52: 104454. doi: 10.1016/j.jobe.2022.104454
    Warburton G. B. , Richardson J. D. , Webster J. J. , 1971. Forced vibrations of two masses on an elastic half space. Journal of Applied Mechanics, 38(1): 148—156. doi: 10.1115/1.3408735
    Whitman R. V. , 1969. The current status of soil dynamics. Applied Mechanics Reviews, 22(1): 1—8.
    Wong H. L. , Trifunac M. D. , 1975. Two-dimensional, antiplane, building-soil-building interaction for two or more buildings and for incident planet SH waves. Bulletin of the Seismological Society of America, 65(6): 1863—1885.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  22
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回