Research on Dynamic Interaction Characteristics of Soil-pile-steel Frame Structure
-
摘要: 利用振动台模型试验和有限元数值模拟的方法对土质地基-群桩-钢框架结构体系动力相互作用的规律和特征进行研究,并讨论了基桩长径比对于体系动力相互作用特征的影响。试验地基土体模型为均匀粉质黏土,剪切波速约为213 m/s;群桩基础由9根长2.0 m、直径0.1 m的基桩3×3对称布置;上部结构模型简化为三层钢框架结构。本文研究结果表明:土-桩-钢框架结构体系的阻尼比相较固定基础情形有所增加,输入相同地震动时其地震反应小于固定基础情形;动力相互作用体系中运动相互作用的贡献与惯性相互作用相当,不应忽略;随着基桩长径比的增大,运动相互作用增大,钢框架结构的加速度反应增大。Abstract: The laws and characteristics of dynamic interaction of soil-pile group-steel frame structure system were studied by shaking table model test and finite element numerical simulation, and the influence of pile aspect ratio on the dynamic interaction characteristics of the system was discussed. In the test, the soil model was uniform silted clay, and the shear wave velocity was about 213 m/s; The pile group foundation was composed of 9 piles with a length of 2.0 m and a diameter of 0.1 m, which were a 3×3 symmetrical layout; The superstructure model was simplified as a three story steel frame structure. The results show that comparing with fixed foundation structure, the damping ratio of the soil-pile-steel frame structure system is increased, and its seismic response is less than that of the fixed foundation structure under the same seismic input; The contribution of the kinematic interaction in dynamic interaction system is equivalent to that of inertial interaction which should not be ignored; With the increase of pile aspect ratio, the kinematic interaction and acceleration response of the steel frame structure increase.
-
表 1 白噪声法求得试验模型的自振特性
Table 1. Natural vibration characteristics of experimental model by white noise method
测试时刻 土-桩-钢框架结构体系模型 固定基础钢框架结构模型 自振频率/Hz 阻尼比 自振频率/Hz 阻尼比 试验开始前 4.93 0.185 4.96 0.096 试验结束后 4.63 0.186 4.83 0.124 表 2 有限元模型材料参数
Table 2. Material parameters of the finite element model
材料参数 土体 基础-混凝土 钢框架结构-梁、柱以及底板 钢框架结构-楼板 钢框架结构-侧墙 密度/kg·m3 1800 2560 7850 36259 2700 弹性模量/MPa 204 19095 210000 210000 70000 泊松比 0.25 0.20 0.25 0.25 0.33 表 3 不同基桩长径比模型的承台处加速度放大系数和相干函数比
Table 3. Acceleration amplification factor at the cap and coherence function ratio of different pile aspect ratio models
长径比 承台处加速度放大系数 相干函数比 12 1.49 1.20 16 1.56 1.19 20 1.59 1.19 24 1.61 1.18 28 1.62 1.16 -
董瑞, 2020. 地铁车站-桥梁耦联地震破坏机理及数值模拟. 哈尔滨: 中国地震局工程力学研究所.Dong R., 2020. Coupled failure mechanism of subway station-bridge and seismic response numerical simulation. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 景立平, 汪刚, 李嘉瑞等, 2022 a. 土–桩基–核岛体系动力相互作用振动台试验及数值模拟. 岩土工程学报, 44(1): 163—172Jing L. P. , Wang G. , Li J. R. , et al. , 2022 a. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system. Chinese Journal of Geotechnical Engineering, 44(1): 163—172. (in Chinese) 景立平, 张嘉辉, 汪刚等, 2022 b. 软土地基核电厂房动力响应振动台试验. 世界地震工程, 38(3): 10—18Jing L. P. , Zhang J. H. , Wang G. , et al. , 2022 b. Shaking table test of dynamic response of nuclear power plant on soft soil foundation. World Earthquake Engineering, 38(3): 10—18. (in Chinese) 邱明兵, 2021. 水平地震作用下桩土相互作用效应研究. 北京: 中国建筑科学研究院有限公司.Qiu M. B., 2021. Research on pile-soil interaction effect under horizontal earthquake. Beijing: China Academy of Building Research. (in Chinese) 尚守平, 朱志辉, 吴方伯, 2006. 土-箱基-框架结构动力相互作用大比例模型野外试验研究. 工程力学, 23(10): 118—124Shang S. P. , Zhu Z. H. , Wu F. B. , 2006. Large-scale field model test on dynamic soil-box foundation-structure interaction. Engineering Mechanics, 23(10): 118—124. (in Chinese) 汪刚, 景立平, 李嘉瑞等, 2021. 桩–土–上部结构动力相互作用振动台试验研究. 岩石力学与工程学报, 40(S2): 3414—3424Wang G. , Jing L. P. , Li J. R. , et al. , 2021. Shaking table test study on seismic-soil-pile-superstructure-interaction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3414—3424. (in Chinese) 王慧, 杨光辉, 张鸿儒, 1998. 桩—土体系运动相互作用参数分析. 见: 第七届全国结构工程学术会议论文集(第Ⅲ卷). 石家庄: 中国力学学会工程力学编辑部, 533—539. 王济, 胡晓, 2006. MATLAB在振动信号处理中的应用. 北京: 中国水利水电出版社. 魏春莉, 2008. 桩-土-桥梁结构地震动力相互作用振动台模拟试验研究. 重庆: 重庆交通大学.Wei C. L., 2008. Shaking table test of seismic pile-soil-structure interaction. Chongqing: Chongqing Jiaotong University. (in Chinese) 赵晓光, 2020. 地震作用下建筑高低承台群桩基础响应规律试验研究. 北京: 中国建筑科学研究院.Zhao X. G., 2020. Experimental research on response law of pile group foundation with high and low cap under earthquake action. Beijing: China Academy of Building Research. (in Chinese) Borghei A. , Ghayoomi M. , 2019. The role of kinematic interaction on measured seismic response of soil-foundation-structure systems. Soil Dynamics and Earthquake Engineering, 125: 105674. doi: 10.1016/j.soildyn.2019.05.013 Castelli F. , Maugeri M. , 2009. Simplified approach for the seismic response of a pile foundation. Journal of Geotechnical and Geoenvironmental Engineering, 135(10): 1440—1451. doi: 10.1061/(ASCE)GT.1943-5606.0000107 Meymand P. J., 1998. Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Berkeley: University of California. Scarfone R. , Morigi M. , Conti R. , 2020. Assessment of dynamic soil-structure interaction effects for tall buildings: a 3 D numerical approach. Soil Dynamics and Earthquake Engineering, 128: 105864. doi: 10.1016/j.soildyn.2019.105864 Ullah M. , Yamamoto H. , Goit C. S. , et al. , 2018. On the verification of superposition method of kinematic interaction and inertial interaction in dynamic response analysis of soil-pile-structure systems. Soil Dynamics and Earthquake Engineering, 113: 522—533. doi: 10.1016/j.soildyn.2018.06.023 Ullah M. , Kajiwara K. , Goit C. S. , et al. , 2019. Frequency and intensity dependent dynamic responses of soil-steel pipe sheet pile (SPSP) foundation-superstructure system. Soil Dynamics and Earthquake Engineering, 125: 105730. doi: 10.1016/j.soildyn.2019.105730 Zhang M. , Zhao C. L. , Xu C. J. , 2021. Lateral dynamic response of pile group embedded in unsaturated soil. Soil Dynamics and Earthquake Engineering, 142: 106559. doi: 10.1016/j.soildyn.2020.106559