Analysis Methods of Soil-pile-isolated Structure Nonlinear Dynamic Interaction
-
摘要: 近年来,土-桩-隔震结构非线性动力相互作用成为结构抗震领域热点研究问题之一。首先,在回顾现有土-桩-隔震结构非线性动力相互作用研究的基础上,分析国内外学者针对土-桩-隔震结构动力相互作用采用的主要分析方法,包括理论分析法、整体时程分析法、模型试验法及能量分析法;然后,系统地总结了目前考虑土-结构相互作用的隔震结构动力反应相关研究成果;最后,分析了现有研究存在的不足及亟待解决的问题,并给出相关研究建议。Abstract: In recent years, the soil-pile-isolated structure nonlinear dynamic interaction (SPISI) has been one of the significant research issues in the field of structure seismic resistance. This paper reviewed the existing research on the SPISI field and sorted out the main analytical methods in the SPISI field, including theoretical analysis methods, time history analysis methods, model test methods and energy analysis methods, etc. On this basis, the current research results on the dynamic response of isolated structures considering soil-structure interaction were systematically summarized. Finally, the shortcomings of existing research and problems that need to be solved were analyzed and the relevant research recommendations for the imperfections of existing research were given. The research results can be used as a foundation for subsequent research in this field.
-
图 1 抗震与隔震结构(苏经宇等,2012)
Figure 1. Earthquake resistant and isolated structures (Su et al., 2012)
图 2 SPISI简化分析模型(于旭等,2017)
Figure 2. The simplified model of SPISI (Yu X, et al., 2017)
图 4 考虑SPISI效应的结构动力三维有限元分析模型(Hokmabadi等,2014)
Figure 4. 3D dynamic structure finite element model considering SPISI effect(Hokmabadi et al., 2014)
图 5 桩-土-隔震结构计算模型(邹立华等,2004)
Figure 5. Calculating model of pile-soil-isloated structure (Zou et al., 2004)
图 6 子结构法计算模型(李海岭等,2001)
Figure 6. Calculation model of substructure method (Li et al., 2001)
图 7 土性地基有限元模型于旭等(于旭等, 2016a)
Figure 7. Finite element model of soil foundation (Yu X. et al., 2016a)
图 8 土-桩-多层隔震结构体系振动台模型(Yu等,2017)
Figure 8. Shaking table model test of soil-pile-multi-layer isolated structure system (Yu et al., 2017)
图 9 土-桩-多层隔震结构相互作用体系加速度峰值放大系数(Yu等,2017)
Figure 9. AMFs of the soil-pile-multi-layer isolated structure interaction system (Yu et al., 2017)
图 10 不同地基上小高宽比隔震结构体系隔震效率对比(Yu等,2017)
Figure 10. Comparison of seismic isolation efficiency of small aspect ratio isolated structure system on different foundations (Yu et al., 2017)
图 11 土-桩-高层隔震结构模型体系振动台试验(李昌平等,2013b)
Figure 11. Shaking table model test of soil-pile-high-rise isolated structure system (Li et al., 2013b)
图 12 土-桩-层间隔震结构模型体系振动台试验(吴应雄等,2022)
Figure 12. Shaking table model test of soil-pile-interlayer isolated structure system (Wu et al., 2022)
图 13 岩土隔震系统(景立平等,2020)
Figure 13. The diagram of geotechnical isolated system (Jing et al., 2020)
图 14 基于能量抗震设计方法的实施框架(叶列平等,2014)
Figure 14. Procedure for calculating structural member total cumulative dissipated energy (Ye et al., 2014)
图 15 刚性地基上隔震结构各部分耗能比组成(于旭等,2016b)
Figure 15. Ratio of energy dissipation of parts of isolated structure on rigid foundation (Yu et al., 2016b)
图 16 软夹层地基上隔震结构各部分耗能比组成(于旭等,2016b)
Figure 16. Ratio of energy dissipation of parts of isolated structure on softer interlayer soil foundation (Yu et al., 2016b)
-
郭迅, 2009. 汶川大地震震害特点与成因分析. 地震工程与工程振动, 29(6): 74—87 doi: 10.13197/j.eeev.2009.06.008Guo X. , 2009. Characteristics and mechanism analysis of the great Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 29(6): 74—87. (in Chinese) doi: 10.13197/j.eeev.2009.06.008 何文福, 霍达, 刘文光等, 2010. 高层隔震结构振动台试验及数值分析. 北京工业大学学报, 36(3): 334—339 doi: 10.11936/bjutxb2010030334He W. F. , Huo D. , Liu W. G. , 2010. Experimental study and numerical analysis of high rise isolated structure. Journal of Beijing University of Technology, 36(3): 334—339. (in Chinese) doi: 10.11936/bjutxb2010030334 胡秀杰, 撒卫昌, 贺震, 2008. 汶川地震震害调查及分析. 陕西建筑, (11): 17—20. 景立平, 尹志勇, 孙海峰等, 2020. 两种岩土隔震系统的振动台试验研究. 岩土工程学报, 42(11): 1969—1978Jing L. P. , Yin, Z. Y. , Sun H. F. , et al. , 2020. Shaking table tests on two geotechnical seismic isolation systems. Chinese Journal of Geotechnical Engineering, 42(11): 1969—1978. (in Chinese) 李昌平, 刘伟庆, 王曙光等, 2013 a. 软土地基上高层隔震结构模型振动台试验研究. 建筑结构学报, 34(7): 72—78 doi: 10.14006/j.jzjgxb.2013.07.011Li C. P. , Liu W. Q. , Wang S. G. , et al. , 2013 a. Shaking table test on high-rise isolated structure on soft soil foundation. Journal of Building Structures, 34(7): 72—78. (in Chinese) doi: 10.14006/j.jzjgxb.2013.07.011 李昌平, 刘伟庆, 王曙光等, 2013 b. 土-隔震结构相互作用体系动力特性参数的简化分析方法. 工程力学, 30(7): 173—179Li C. P. , Liu W. Q. , Wang S. G. , et al. , 2013 b. Simplified method for calculating dynamic characteristics of soil-isolated structure system. Engineering Mechanics, 30(7): 173—179. (in Chinese) 李海岭, 葛修润, 2001. 土-结构相互作用对基础隔震体系的影响. 土木工程学报, 34(4): 83—87 doi: 10.3321/j.issn:1000-131X.2001.04.013Li H. L. , Ge X. R. , 2001. Effect of soil-structure interaction on base- isolated building system. China Civil Engineering Journal, 34(4): 83—87. (in Chinese) doi: 10.3321/j.issn:1000-131X.2001.04.013 李忠献, 李延涛, 王健, 2003. 土-结构动力相互作用对基础隔震的影响. 地震工程与工程振动, 23(5): 180—186 doi: 10.3969/j.issn.1000-1301.2003.05.029Li Z. X. , Li Y. T. , Wang J. , 2003. Influence of soil-structure dynamic interaction on base isolation. Earthquake Engineering and Engineering Vibration, 23(5): 180—186. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.05.029 楼梦麟, 王文剑, 马恒春等, 2001. 土-桩-结构相互作用体系的振动台模型试验. 同济大学学报, 29(7): 763—768Lou M. L. , Wang W. J. , Ma H. C. , et al. , 2001. Study on soil-pile-structure interaction system by shaking table model test. Journal of Tongji University, 29(7): 763—768. (in Chinese) 楼梦麟, 宗刚, 牛伟星等, 2006. 土-桩-钢结构相互作用体系的振动台模型试验. 地震工程与工程振动, 26(5): 226—230 doi: 10.3969/j.issn.1000-1301.2006.05.037Lou M. L. , Zong G. , Niu W. X. , et al. , 2006. Shaking table model test of soil-pile-steel structure interaction system. Earthquake Engineering and Engineering Vibration, 26(5): 226—230. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.05.037 宋进, 熊峰, 吕洋等, 2019. 考虑SSI效应的基础隔震结构隔震性能参数分析. 地震工程与工程振动, 39(4): 236—244 doi: 10.13197/j.eeev.2019.04.236.songj.025Song J. , Xiong F. , Lv Y. , et al, 2019. Parametric analysis of seismic performance of base-isolated buildings considering SSI effects. Earthquake Engineering and Engineering Dynamics, 39(4): 236—244. (in Chinese) doi: 10.13197/j.eeev.2019.04.236.songj.025 苏经宇, 曾德民, 田杰, 2012. 隔震建筑概论. 北京: 冶金工业出版社. 吴京宁, 楼梦麟, 1997. 土-结构相互作用对高层建筑TMD控制的影响. 同济大学学报, 25(5): 515—520Wu J. N. , Lou M. L. , 1997. Influence of soil-structure interaction on tuned mass damper control of high-rising buildings. Journal of Tongji University, 25(5): 515—520. (in Chinese) 吴应雄, 林友勤, 2022. 远场长周期地震作用下桩-土-层间隔震结构体系的响应特征与失效控制. 水利与建筑工程学报, 20(4): 1—8 doi: 10.3969/j.issn.1672-1144.2022.04.001Wu Y. X. , Lin Y. Q. , 2022. Response characteristics and failure control of mid-story isolated structures considering the pile-soi-structure interaction under far-field long-period ground motion. Journal of Water Resources and Architectural Engineering, 20(4): 1—8. (in Chinese) doi: 10.3969/j.issn.1672-1144.2022.04.001 许立英, 吴应雄, 田泓, 2022. 长周期地震动下软土地基的偏心基础隔震结构振动台试验研究. 建筑结构学报, 43(8): 1—11 doi: 10.14006/j.jzjgxb.2021.0097Xu L. Y. , Wu Y. X. , Tian H. , 2022. Shaking table test of eccentric base-isolated structure on soft soil foundation under long-period ground motion. Journal of Building Structures, 43(8): 1—11. (in Chinese) doi: 10.14006/j.jzjgxb.2021.0097 叶列平, 缪志伟, 程光煜等, 2014. 建筑结构基于能量抗震设计方法研究. 工程力学, 31(6): 1—12, 20Ye L. P. , Miao Z. W. , Cheng G. Y. , et al. , 2014. Study on the energy-based seismic design method of building structures. Engineering Mechanics, 31(6): 1—12, 20. (in Chinese) 于旭, 宰金珉, 王志华, 2009. 土-结构相互作用对铅芯橡胶支座隔震结构的影响. 自然灾害学报, 18(3): 146—152 doi: 10.3969/j.issn.1004-4574.2009.03.025Yu X. , Zai J. M. , Wang Z. H. , 2009. Effect of soil-structure interaction on lead core rubber bearing isolations structure. Journal of Natural Disasters, 18(3): 146—152. (in Chinese) doi: 10.3969/j.issn.1004-4574.2009.03.025 于旭, 朱超, 庄海洋等, 2016 a. 软夹层场地隔震结构动力特性试验与数值计算对比分析. 南京航空航天大学学报, 48(4): 590—597Yu X. , Zhu C. , Zhuang H. Y. , et al. , 2016 a. Result comparison between experiment and numerical simulation for base isolated structure on soil ground. Journal of Nanjing University of Aeronautics & Astronautics, 48(4): 590—597. (in Chinese) 于旭, 庄海洋, 朱超, 2016 b. 基于模型试验的软夹层地基与刚性地基上隔震结构体系耗能特性分析. 振动与冲击, 35(10): 73—82Yu X. , Zhuang H. Y. , Zhu C. , 2016 b. Analysis on the energy dissipation of isolated structures on rigid foundation and soft interlayer soil foundation based on model test. Journal of Vibration and Shock, 35(10): 73—82. (in Chinese) 于旭, 庄海洋, 陈国兴等, 2017. 软弱地基上隔震结构地震反应及隔震效果的预测方法研究. 振动工程学报, 30(5): 817—826.Yu X. , Zhuang H. Y. , Chen G. X. , et al. , 2017. Prediction method research of seismic response and seismic isolation effect of isolated structure on soft soil foundation. Journal of Vibration Engineering, 30(5): 817—826. (in Chinese) 瞿岳前, 梁兴文, 田野, 2006. 基于能量分析的地震损伤性能评估. 世界地震工程, 22(1): 109—114 doi: 10.3969/j.issn.1007-6069.2006.01.021Qu Y. Q. , Liang X. W. , Tian Y. , 2006. Evaluation of seismic damage performance based on energy analysis. World Earthquake Engineering, 22(1): 109—114. (in Chinese) doi: 10.3969/j.issn.1007-6069.2006.01.021 张震, 2016. 软弱地基上考虑SSI效应的桩基基础隔震结构动力特性研究. 合肥: 安徽建筑大学.Zhang Z., 2016. Study on the dynamic characteristics of the pie base isolation structure considering the SSI effect on soft foundation. Hefei: Anhui Jianzhu University. (in Chinese) 周云, 徐彤, 周福霖, 1999. 抗震与减震结构的能量分析方法研究与应用. 地震工程与工程振动, 19(4): 133—139 doi: 10.3969/j.issn.1000-1301.1999.04.021Zhou Y. , Xu T. , Zhou F. L. , 1999. Research and development of structural seismic design based on energy method. Earthquake Engineering and Engineering Dynamics, 19(4): 133—139. (in Chinese) doi: 10.3969/j.issn.1000-1301.1999.04.021 朱超, 2015. 软弱地基上桩基基础隔震结构动力特性研究. 南京: 南京工业大学.Zhu C., 2015. Study of dynamic characteristics of pile base isolation structure on soft ground. Nanjing: Nanjing Tech University. (in Chinese) 庄海洋, 陈国兴, 朱定华, 2006. 土体动力粘塑性记忆型嵌套面本构模型及其验证. 岩土工程学报, 28(10): 1267—1272 doi: 10.3321/j.issn:1000-4548.2006.10.017Zhuang H. Y. , Chen G. X. , Zhu D. H. , 2006. Dynamic visco-plastic memorial nested yield surface model of soil and its verification. Chinese Journal of Geotechnical Engineering, 28(10): 1267—1272. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.017 庄海洋, 于旭, 2017. 土-桩-隔震结构动力相互作用. 北京: 中国建筑工业出版社. 庄海洋, 赵畅, 于旭等, 2022. 液化地基上隔震结构群桩与土动力相互作用振动台模型试验研究. 岩土工程学报, 44(6): 979—987Zhuang H. Y. , Zhao C. , Yu X. , et al, 2022. Earthquake responses of piles-soil dynamic interaction system for base-isolated structure system based on shaking table tests. Chinese Journal of Geotechnical Engineering, 44(6): 979—987. (in Chinese) 邹立华, 赵人达, 赵建昌, 2004. 桩-土-隔震结构相互作用地震响应分析. 岩土工程学报, 26(6): 782—786 doi: 10.3321/j.issn:1000-4548.2004.06.011Zou L. H. , Zhao R. D. , Zhao J. C. , 2004. Analysis of the response to earthquake of the pile-soil-isolated structure interaction. Chinese Journal of Geotechnical Engineering, 26(6): 782—786. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.06.011 Benavent-Climent A. , Escobedo A. , Donaire-Avila J. , et al. , 2014. Assessment of expected damage on buildings subjected to Lorca earthquake through an energy-based seismic index method and nonlinear dynamic response analyses. Bulletin of Earthquake Engineering, 12(5): 2049—2073. doi: 10.1007/s10518-013-9513-9 Cho K. H. , Kim M. K. , Lim Y. M. , et al. , 2004. Seismic response of base-isolated liquid storage tanks considering fluid-structure-soil interaction in time domain. Soil Dynamics and Earthquake Engineering, 24(11): 839—852. doi: 10.1016/j.soildyn.2004.05.003 Constantinou M. C., Kneifati M. C., 1988. Dynamics of soil-base-isolated-structure systems. Journal of Structural Engineering, 114(l): 211—221. Fathi M. , Makhdoumi A. , Parvizi M. , 2015. Effect of supplemental damping on seismic response of base isolated frames under near & far field accelerations. KSCE Journal of Civil Engineering, 19(5): 1359—1365. doi: 10.1007/s12205-014-0101-6 Hokmabadi A. S. , Fatahi B. , Samali B. , 2014. Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Computers and Geotechnics, 55: 172—186. doi: 10.1016/j.compgeo.2013.08.011 Hong G., Li M., Yang Y. Z., 2012. Nonlinear dynamic analysis of the damping frame structure system. Advanced Materials Research, 594—597: 886—890. Housner G. W., 1956. Limit design of structures to resist earthquakes. In: Proceedings of the First World Conference on Earthquake Engineering. Berkeley, California: Earthquake Engineering Research Institute, 1—12. Mahmoud S., Austrell P. E., Jankowsk R., 2012. Non-linear behaviour of base-isolated building supported on flexible soil under damaging earthquakes. In: 10 th International Conference on Fracture and Damage Mechanics. Dubrovnik: Trans Tech Publications, 488—489: 142—145. Maravas A., Mylonakis G., Karabalis D. L., 2014. Simplified discrete systems for dynamic analysis of structures on footings and piles. Soil Dynamics and Earthquake Engineering, 61—62: 29—39. Markou A. A. , Manolis G. D. , 2016. A fractional derivative Zener model for the numerical simulation of base isolated structures. Bulletin of Earthquake Engineering, 14(1): 283—295. doi: 10.1007/s10518-015-9801-7 Mazza F. , 2015. Nonlinear incremental analysis of fire-damaged r. c. base-isolated structures subjected to near-fault ground motions. Soil Dynamics and Earthquake Engineering, 77: 192—202. Novak M. , Henderson P. , 1989. Base-isolated buildings with soil-structure interaction. Earthquake Engineering & Structural Dynamics, 18(6): 751—765. Spyrakos C. C. , Maniatakis C. A. , Koutromanos I. A. , 2009. Soil-structure interaction effects on base-isolated buildings founded on soil stratum. Engineering Structures, 31(3): 729—737. doi: 10.1016/j.engstruct.2008.10.012 Tsai C. S. , Chen C. S. , Chen B. J, 2004. Effects of unbounded media on seismic responses of FPS-isolated structures. Structural Control and Health Monitoring, 11(1): 1—20. doi: 10.1002/stc.28 Veletsos A. S. , Verbič B. , 1973. Vibration of viscoelastic foundations. Earthquake Engineering & Structural Dynamics, 2(1): 87—102. Yu X. , Zhuang H. Y. , Zhao C. , 2017. Shaking table model test of isolated structure on soft site and analysis on its isolation efficiency. Transactions of Nanjing University of Aeronautics & Astronautics, 34(2): 169—176.