• ISSN 1673-5722
  • CN 11-5429/P

SV波斜入射时地铁车站-土-邻近地表框架结构动力相互作用分析

张季 蒋玮 谭灿星 许紫刚 唐柏赞 庄海洋

张季,蒋玮,谭灿星,许紫刚,唐柏赞,庄海洋,2022. SV波斜入射时地铁车站-土-邻近地表框架结构动力相互作用分析. 震灾防御技术,17(4):622−631. doi:10.11899/zzfy20220402. doi: 10.11899/zzfy20220402
引用本文: 张季,蒋玮,谭灿星,许紫刚,唐柏赞,庄海洋,2022. SV波斜入射时地铁车站-土-邻近地表框架结构动力相互作用分析. 震灾防御技术,17(4):622−631. doi:10.11899/zzfy20220402. doi: 10.11899/zzfy20220402
Zhang Ji, Jiang Wei, Tan Canxing, Xu Zigang, Tang Baizan, Zhuang Haiyang. Analysis on Dynamic Interaction of Subway Station-soil-aboveground Frame Structure Under Inclined Incidence of SV Wave[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 622-631. doi: 10.11899/zzfy20220402
Citation: Zhang Ji, Jiang Wei, Tan Canxing, Xu Zigang, Tang Baizan, Zhuang Haiyang. Analysis on Dynamic Interaction of Subway Station-soil-aboveground Frame Structure Under Inclined Incidence of SV Wave[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 622-631. doi: 10.11899/zzfy20220402

SV波斜入射时地铁车站-土-邻近地表框架结构动力相互作用分析

doi: 10.11899/zzfy20220402
基金项目: 国家自然科学基金青年基金(52008170)
详细信息
    作者简介:

    张季,男,生于1985年。博士,副教授,硕士生导师。主要从事地震工程方面的研究。E-mail:jizhang@ecjtu.edu.cn

    通讯作者:

    庄海洋,男,生于1978 年。博士,教授,博士生导师。主要从事地震工程方面的研究。E-mail:zhuang7802@163.com

Analysis on Dynamic Interaction of Subway Station-soil-aboveground Frame Structure Under Inclined Incidence of SV Wave

  • 摘要: 地震作用下地铁车站和邻近建筑间的动力相互作用问题已引起许多学者的关注和重视,然而斜入射地震波作用下的相互作用分析研究较少,有关规律仍不明确。为此建立基于黏弹性人工边界的地铁车站-土-地表框架结构整体动力分析有限元模型,围绕入射角、地上与地下结构间距、场地类别等因素,采用频域刚度矩阵自由场地震响应分析方法获得任意角度斜入射SV波作用下地铁车站-土-地表框架结构动力响应规律。研究结果表明,地表框架结构的存在会显著增大车站中柱轴力幅值,当地表框架结构与车站紧邻时,中柱轴力放大幅度最大为730%,放大效应会改变轴力随入射角的变化规律,总体上使车站中柱轴力在SV波垂直入射和超临界角10°左右入射时均具有相当的幅值;地表框架结构对地铁车站层间位移角的影响与场地条件密切相关,在较硬的场地(Ⅱ类场地)中,车站层间位移角放大幅度最大为74%,在较软的场地(Ⅳ类场地)中,车站层间位移角缩小幅度最大为30%;地铁车站的存在对地表框架结构层间位移角具有放大作用,总体上地铁车站与地表框架结构的距离越近,放大作用越明显,地表框架结构层间位移角放大幅度最大为52%。建议将0°入射和超临界角10°左右入射工况作为地上或地下结构地震响应分析的不利工况。
  • 图  1  分析模型

    Figure  1.  Analysis model

    图  2  车站结构横断面(单位:毫米)

    Figure  2.  Sectional view of the station(Unit:mm)

    图  3  算例场地土层参数

    Figure  3.  Soil profiles of the example sites

    图  4  地震波加速度时程

    Figure  4.  Accelerograms of incident waves

    图  5  自由场地表中点加速度峰值随入射角变化曲线

    Figure  5.  Curve of peak acceleration of midpoint on the surface of free field varying with incident angle

    图  6  Ⅱ类场地中地铁车站内力幅值随入射角变化曲线

    Figure  6.  Amplitudes of internal forces of subway station varying with incident angles in class Ⅱ site

    图  7  Ⅲ类场地中地铁车站内力幅值随入射角变化曲线

    Figure  7.  Amplitudes of internal forces of subway station varying with incident angles in class Ⅲ site

    图  8  Ⅳ类场地中地铁车站内力幅值随入射角变化曲线

    Figure  8.  Amplitudes of internal forces of subway station varying with incident angles in class Ⅳ site

    图  9  El Centro波作用下车站层间位移角随入射角变化曲线

    Figure  9.  Variation curves of story drift ratio versus incident angle under El Centro wave

    图  10  Kobe波作用下车站层间位移角随入射角变化曲线

    Figure  10.  Variation curves of story drift ratio versus incident angle under Kobe wave

    图  11  地表框架结构最大层间位移角随入射角变化曲线

    Figure  11.  Variation curves of maximum story drift ratio of aboveground frame structure versus incident angle

  • 杜修力, 赵密, 王进廷, 2006. 近场波动模拟的人工应力边界条件. 力学学报, 38(1): 49—56 doi: 10.3321/j.issn:0459-1879.2006.01.007

    Du X. L. , Zhao M. , Wang J. T. , 2006. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics, 38(1): 49—56. (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.01.007
    黄景琦, 杜修力, 田志敏等, 2014. 斜入射SV波对地铁车站地震响应的影响. 工程力学, 31(9): 81—88, 103 doi: 10.6052/j.issn.1000-4750.2013.03.0278

    Huang J. Q. , Du X. L. , Tian Z. M. , et al. , 2014. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station structure. Engineering Mechanics, 31(9): 81—88, 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03.0278
    李延涛, 田野, 宗金辉等, 2020. 受相邻上部结构影响的隧道-土体系振动台试验研究. 振动与冲击, 39(3): 233—241, 259

    Li Y. T. , Tian Y. , Zong J. H. , et al. , 2020. Shaking-table tests for seismic response of tunnel-soil system affected by adjacent upper structure. Journal of Vibration and Shock, 39(3): 233—241, 259. (in Chinese)
    刘晶波, 吕彦东, 1998. 结构-地基动力相互作用问题分析的一种直接方法. 土木工程学报, 31(3): 55—64

    Liu J. B. , Lv Y. D. , 1998. A direct method for analysis of dynamic soil-structure interaction. China Civil Engineering Journal, 31(3): 55—64. (in Chinese)
    刘晶波, 杜义欣, 闫秋实, 2007. 粘弹性人工边界及地震动输入在通用有限元软件中的实现. 见: 中国土木工程学会. 第三届全国防震减灾工程学术研讨会论文集. 南京: 《防灾减灾工程学报》编辑部, 43—48.
    邱滟佳, 张鸿儒, 于仲洋, 2021. 受周边地上建筑影响地铁车站的抗震设计方法. 岩土力学, 42(5): 1443—1452

    Qiu Y. J. , Zhang H. R. , Yu Z. Y. , 2021. A seismic design method of subway stations affected by surrounding buildings. Rock and Soil Mechanics, 42(5): 1443—1452. (in Chinese)
    王国波, 于艳丽, 何卫, 2014. 下穿隧道-土-地表邻近框架结构相互作用体系地震响应初步分析. 岩土工程学报, 36(2): 334—338 doi: 10.11779/CJGE201402010

    Wang G. B. , Yu Y. L. , He W. , 2014. Seismic response of interaction system of underlying tunnels, soils and adjacent frame structures. Chinese Journal of Geotechnical Engineering, 36(2): 334—338. (in Chinese) doi: 10.11779/CJGE201402010
    王国波, 王亚西, 陈斌等, 2015. 隧道-土体-地表结构相互作用体系地震响应影响因素分析. 岩石力学与工程学报, 34(6): 1276—1287

    Wang G. B. , Wang Y. X. , Chen B. , et al. , 2015. Analysis of factors influencing seismic responses of tunnel-soil-ground structural system. Chinese Journal of Rock Mechanics and Engineering, 34(6): 1276—1287. (in Chinese)
    王国波, 巴峰, 王垚等, 2022. 考虑场地-城市效应的复杂相互作用体系地震响应研究进展. 自然灾害学报, 31(3): 1—14 doi: 10.13577/j.jnd.2022.0301

    Wang G. B. , Ba F. , Wang Y. , et al. , 2022. Research progress on seismic response of complex interaction system considering site-city effect. Journal of Natural Disasters, 31(3): 1—14. (in Chinese) doi: 10.13577/j.jnd.2022.0301
    张季, 谭灿星, 黄源等, 2020. 地震作用下软土-隧道-地上框架体系动力反应分析. 振动与冲击, 39(22): 278—286

    Zhang J. , Tan C. X. , Huang Y. , et al. , 2020. Dynamic response analyses of soft soil-tunnel-aboveground frame systems under earthquake. Journal of Vibration and Shock, 39(22): 278—286. (in Chinese)
    张季, 谭灿星, 许开成, 2021 a. 地震作用下软土-隧道-地上框架体系非线性动力反应分析. 振动与冲击, 40(12): 159—167

    Zhang J. , Tan C. X. , Xu K. C. , 2021 a. Nonlinear dynamic response analyses of a soft soil-tunnel-aboveground frame structure system under earthquake. Journal of Vibration and Shock, 40(12): 159—167. (in Chinese)
    张季, 谭灿星, 叶国涛等, 2021 b. SV波超临界角斜入射时层状地基地震动输入在ABAQUS中的实现. 工程力学, 38(4): 200—210

    Zhang J. , Tan C. X. , Ye G. T. , et al. , 2021 b. Realization of ground motion input in ABAQUS for layered foundation under SV wave of oblique incidence over critical angle. Engineering Mechanics, 38(4): 200—210. (in Chinese)
    庄海洋, 任佳伟, 王瑞等, 2019. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究. 岩土工程学报, 41(1): 131—138

    Zhuang H. Y. , Ren J. W. , Wang R. , et al. , 2019. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans. Chinese Journal of Geotechnical Engineering, 41(1): 131—138. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    Jin L. G. , Zhu J. , Zhou W. , et al. , 2022. 2 D dynamic tunnel-soil-aboveground building interaction I: analytical solution for incident plane SH-waves based on rigid tunnel and foundation model. Tunnelling and Underground Space Technology, 128: 104625. doi: 10.1016/j.tust.2022.104625
    Pitilakis K. , Tsinidis G. , Leanza A. , et al. , 2014. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects. Soil Dynamics and Earthquake Engineering, 67: 1—15. doi: 10.1016/j.soildyn.2014.08.009
    Wang G. B. , Yuan M. Z. , Miao Y. , et al. , 2018. Experimental study on seismic response of underground tunnel-soil-surface structure interaction system. Tunnelling and Underground Space Technology, 76: 145—159. doi: 10.1016/j.tust.2018.03.015
  • 加载中
图(11)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  68
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回