杜修力, 赵密, 王进廷, 2006. 近场波动模拟的人工应力边界条件. 力学学报, 38(1): 49—56 doi: 10.3321/j.issn:0459-1879.2006.01.007Du X. L. , Zhao M. , Wang J. T. , 2006. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Applied Mechanics, 38(1): 49—56. (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.01.007
|
黄景琦, 杜修力, 田志敏等, 2014. 斜入射SV波对地铁车站地震响应的影响. 工程力学, 31(9): 81—88, 103 doi: 10.6052/j.issn.1000-4750.2013.03.0278Huang J. Q. , Du X. L. , Tian Z. M. , et al. , 2014. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station structure. Engineering Mechanics, 31(9): 81—88, 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03.0278
|
李延涛, 田野, 宗金辉等, 2020. 受相邻上部结构影响的隧道-土体系振动台试验研究. 振动与冲击, 39(3): 233—241, 259Li Y. T. , Tian Y. , Zong J. H. , et al. , 2020. Shaking-table tests for seismic response of tunnel-soil system affected by adjacent upper structure. Journal of Vibration and Shock, 39(3): 233—241, 259. (in Chinese)
|
刘晶波, 吕彦东, 1998. 结构-地基动力相互作用问题分析的一种直接方法. 土木工程学报, 31(3): 55—64Liu J. B. , Lv Y. D. , 1998. A direct method for analysis of dynamic soil-structure interaction. China Civil Engineering Journal, 31(3): 55—64. (in Chinese)
|
刘晶波, 杜义欣, 闫秋实, 2007. 粘弹性人工边界及地震动输入在通用有限元软件中的实现. 见: 中国土木工程学会. 第三届全国防震减灾工程学术研讨会论文集. 南京: 《防灾减灾工程学报》编辑部, 43—48.
|
邱滟佳, 张鸿儒, 于仲洋, 2021. 受周边地上建筑影响地铁车站的抗震设计方法. 岩土力学, 42(5): 1443—1452Qiu Y. J. , Zhang H. R. , Yu Z. Y. , 2021. A seismic design method of subway stations affected by surrounding buildings. Rock and Soil Mechanics, 42(5): 1443—1452. (in Chinese)
|
王国波, 于艳丽, 何卫, 2014. 下穿隧道-土-地表邻近框架结构相互作用体系地震响应初步分析. 岩土工程学报, 36(2): 334—338 doi: 10.11779/CJGE201402010Wang G. B. , Yu Y. L. , He W. , 2014. Seismic response of interaction system of underlying tunnels, soils and adjacent frame structures. Chinese Journal of Geotechnical Engineering, 36(2): 334—338. (in Chinese) doi: 10.11779/CJGE201402010
|
王国波, 王亚西, 陈斌等, 2015. 隧道-土体-地表结构相互作用体系地震响应影响因素分析. 岩石力学与工程学报, 34(6): 1276—1287Wang G. B. , Wang Y. X. , Chen B. , et al. , 2015. Analysis of factors influencing seismic responses of tunnel-soil-ground structural system. Chinese Journal of Rock Mechanics and Engineering, 34(6): 1276—1287. (in Chinese)
|
王国波, 巴峰, 王垚等, 2022. 考虑场地-城市效应的复杂相互作用体系地震响应研究进展. 自然灾害学报, 31(3): 1—14 doi: 10.13577/j.jnd.2022.0301Wang G. B. , Ba F. , Wang Y. , et al. , 2022. Research progress on seismic response of complex interaction system considering site-city effect. Journal of Natural Disasters, 31(3): 1—14. (in Chinese) doi: 10.13577/j.jnd.2022.0301
|
张季, 谭灿星, 黄源等, 2020. 地震作用下软土-隧道-地上框架体系动力反应分析. 振动与冲击, 39(22): 278—286Zhang J. , Tan C. X. , Huang Y. , et al. , 2020. Dynamic response analyses of soft soil-tunnel-aboveground frame systems under earthquake. Journal of Vibration and Shock, 39(22): 278—286. (in Chinese)
|
张季, 谭灿星, 许开成, 2021 a. 地震作用下软土-隧道-地上框架体系非线性动力反应分析. 振动与冲击, 40(12): 159—167Zhang J. , Tan C. X. , Xu K. C. , 2021 a. Nonlinear dynamic response analyses of a soft soil-tunnel-aboveground frame structure system under earthquake. Journal of Vibration and Shock, 40(12): 159—167. (in Chinese)
|
张季, 谭灿星, 叶国涛等, 2021 b. SV波超临界角斜入射时层状地基地震动输入在ABAQUS中的实现. 工程力学, 38(4): 200—210Zhang J. , Tan C. X. , Ye G. T. , et al. , 2021 b. Realization of ground motion input in ABAQUS for layered foundation under SV wave of oblique incidence over critical angle. Engineering Mechanics, 38(4): 200—210. (in Chinese)
|
庄海洋, 任佳伟, 王瑞等, 2019. 两层三跨框架式地铁地下车站结构弹塑性工作状态与抗震性能水平研究. 岩土工程学报, 41(1): 131—138Zhuang H. Y. , Ren J. W. , Wang R. , et al. , 2019. Elasto-plastic working states and seismic performance levels of frame-type subway underground station with two layers and three spans. Chinese Journal of Geotechnical Engineering, 41(1): 131—138. (in Chinese)
|
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
|
Jin L. G. , Zhu J. , Zhou W. , et al. , 2022. 2 D dynamic tunnel-soil-aboveground building interaction I: analytical solution for incident plane SH-waves based on rigid tunnel and foundation model. Tunnelling and Underground Space Technology, 128: 104625. doi: 10.1016/j.tust.2022.104625
|
Pitilakis K. , Tsinidis G. , Leanza A. , et al. , 2014. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects. Soil Dynamics and Earthquake Engineering, 67: 1—15. doi: 10.1016/j.soildyn.2014.08.009
|
Wang G. B. , Yuan M. Z. , Miao Y. , et al. , 2018. Experimental study on seismic response of underground tunnel-soil-surface structure interaction system. Tunnelling and Underground Space Technology, 76: 145—159. doi: 10.1016/j.tust.2018.03.015
|