• ISSN 1673-5722
  • CN 11-5429/P

土-结构群相互作用体系地震响应振动台试验研究

王国波 王垚 王建宁 董正方

王国波,王垚,王建宁,董正方,2022. 土-结构群相互作用体系地震响应振动台试验研究. 震灾防御技术,17(4):611−621. doi:10.11899/zzfy20220401. doi: 10.11899/zzfy20220401
引用本文: 王国波,王垚,王建宁,董正方,2022. 土-结构群相互作用体系地震响应振动台试验研究. 震灾防御技术,17(4):611−621. doi:10.11899/zzfy20220401. doi: 10.11899/zzfy20220401
Wang Guobo, Wang Yao, Wang Jianning, Dong Zhengfang. Shaking Table Test Study on Seismic Response of Soil-structure Cluster Interaction System[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 611-621. doi: 10.11899/zzfy20220401
Citation: Wang Guobo, Wang Yao, Wang Jianning, Dong Zhengfang. Shaking Table Test Study on Seismic Response of Soil-structure Cluster Interaction System[J]. Technology for Earthquake Disaster Prevention, 2022, 17(4): 611-621. doi: 10.11899/zzfy20220401

土-结构群相互作用体系地震响应振动台试验研究

doi: 10.11899/zzfy20220401
基金项目: 国家自然科学基金(52078386、51678465)
详细信息
    作者简介:

    王国波,男,生于1979年。教授。主要从事工程结构动力分析的研究。E-mail:20190337@wzu.edu.cn

Shaking Table Test Study on Seismic Response of Soil-structure Cluster Interaction System

  • 摘要: 设计并开展一系列土-结构群相互作用体系振动台试验,考虑结构数量、地震动类型与幅值等参数,研究土-结构群相互作用对结构及场地土响应的影响,并对模型土参数确定方法进行分析。研究结果表明,地表建筑物的存在并不总是减小自由场地面运动,但地面运动随着地表结构数量的增加而降低;土-结构群相互作用对位于结构群中心的结构响应影响最大,且会放大土体卓越频率附近的响应成分;不同评价指标之间具有不同的侧重点,但均可较好地评价结构群之间的相互作用;输入地震动的总能量越高,土-结构群相互作用越明显。
  • 图  1  模型箱

    Figure  1.  Model box

    图  2  模型结构设计与制作示意

    Figure  2.  Model structure design and schematic diagram

    图  3  共振柱试验结果与拟合曲线

    Figure  3.  Resonant column test results and fitting curves

    图  4  土-结构群试验体系测点布置示意

    Figure  4.  Monitor layout of soil-structure cluster test systems

    图  5  输入地震波时程及频谱曲线

    Figure  5.  Time histories and Fourier spectrums of the input seismic wave

    图  6  不同地震动激励下测点A5的峰值加速度对比

    Figure  6.  Comparison of the peak acceleration at the A5 under different seismic excitations

    图  7  不同地震动激励下测点A5的Ia值对比

    Figure  7.  Comparison of the Arias intensity at the A5 under different seismic excitations

    图  8  输入地震动Ia

    Figure  8.  Arias intensity of input seismic waves

    图  9  不同地震动激励下测点A5的加速度响应谱

    Figure  9.  Acceleration spectrums of A5 under different excitations

    图  10  中心结构顶部峰值加速度对比

    Figure  10.  Comparison of the peak acceleration at the roof of central buildings under different excitations

    图  11  中心结构顶部傅里叶谱

    Figure  11.  Fourier spectrums of the central building roof

    图  12  中心结构顶部的位移时程曲线

    Figure  12.  Displacement time histories of the central building roof

    图  13  中心结构顶部的峰值位移对比

    Figure  13.  Comparison of peak displacements of the central building roof

    表  1  相似系数与相似关系

    Table  1.   Similarity coefficient and similarity relation

    特征类型物理量相似关系相似系数
    几何特征几何尺寸SL1/30
    材料特征弹性模量SE0.462
    等效密度Sρ=SE/(SaSL6.923
    应变Sε= Sσ/ SE1
    应力Sσ0.462
    质量Sm= SσSL2/ Sa0.000 256
    动力特征时间St = SL/ (SE / Sρ−0.50.129
    频率Sf = SL−0.5Sa0.57.746
    位移SL1/30
    速度Sv= (SL/ Sa0.50.258
    加速度Sa2
    下载: 导出CSV

    表  2  加载工况

    Table  2.   Test loading cases

    编号自由场 土-1个地表结构 土-3个地表结构 土-5个地表结构
    输入波地震动峰值加速度PGA/g输入波地震动峰值加速度PGA/g输入波地震动峰值加速度PGA/g输入波地震动峰值加速度PGA/g
    1WN0.05 WN0.05 WN0.05 WN0.05
    2EL0.1EL0.1EL0.1EL0.1
    3BJ0.1BJ0.1BJ0.1BJ0.1
    4NR0.1NR0.1NR0.1NR0.1
    5EL0.2EL0.2EL0.2EL0.2
    6BJ0.2BJ0.2BJ0.2BJ0.2
    7NR0.2NR0.2NR0.2NR0.2
    下载: 导出CSV
  • 巴振宁, 慕少聪, 赵靖轩等, 2022. 基于动力学震源模型的三维沉积盆地直下型断层地震动模拟. 震灾防御技术, 17(3): 431—441

    Ba Z. N. , Mu S. C. , Zhao J. X. , et al. , 2022. Ground motion simulation of three-dimensional sedimentary basin based on directly-beneath fault dynamic source model. Technology for Earthquake Disaster Prevention, 17(3): 431—441. (in Chinese)
    Aji H. D. B. , Wuttke F. , Dineva P. , 2022. 3 D structure-soil-structure interaction in an arbitrary layered half-space. Soil Dynamics and Earthquake Engineering, 159: 107352. doi: 10.1016/j.soildyn.2022.107352
    Aldaikh H. , Alexander N. A. , Ibraim E. , et al. , 2015. Two dimensional numerical and experimental models for the study of structure-soil-structure interaction involving three buildings. Computers & Structures, 150: 79—91.
    Aldaikh H. , Alexander N. A. , Ibraim E. , et al. , 2016. Shake table testing of the dynamic interaction between two and three adjacent buildings (SSSI). Soil Dynamics and Earthquake Engineering, 89: 219—232. doi: 10.1016/j.soildyn.2016.08.012
    Anand V. , Kumar S. R. S. , 2018. Seismic soil-structure interaction: a state-of-the-art review. Structures, 16: 317—326. doi: 10.1016/j.istruc.2018.10.009
    Ayala F. , Sáez E. , Magna-Verdugo C. , 2022. Computational modelling of dynamic soil-structure interaction in shear wall buildings with basements in medium stiffness sandy soils using a subdomain spectral element approach calibrated by micro-vibrations. Engineering Structures, 252: 113668. doi: 10.1016/j.engstruct.2021.113668
    Bard P. Y., Chazelas J. L., Guéguen P., et al., 2008. Site-city interaction. In: Oliveira C. S., Roca A., Goula X., eds., Assessing and Managing Earthquake Risk. Dordrecht: Springer, 91—114.
    Barrios G. , Larkin T. , Chouw N. , 2021. Experimental study of the seismic response of a structure set amongst closely adjacent structures. Earthquake Engineering & Structural Dynamics, 50(14): 3771—3791.
    Dijckmans A. , Coulier P. , Jiang J. , et al. , 2015. Mitigation of railway induced ground vibration by heavy masses next to the track. Soil Dynamics and Earthquake Engineering, 75: 158—170. doi: 10.1016/j.soildyn.2015.04.003
    Ge Q. , Xiong F. , Xie L. W. , et al. , 2019. Dynamic interaction of soil-Structure cluster. Soil Dynamics and Earthquake Engineering, 123: 16—30. doi: 10.1016/j.soildyn.2019.04.020
    Hardin B. O. , Drnevich V. P. , 1972. Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7): 667—692. doi: 10.1061/JSFEAQ.0001760
    Isbiliroglu Y. , Taborda R. , Bielak J. , 2015. Coupled soil-structure interaction effects of building clusters during earthquakes. Earthquake Spectra, 31(1): 463—500. doi: 10.1193/102412EQS315M
    Kumar N. , Narayan J. P. , 2018. Quantification of site-city interaction effects on the response of structure under double resonance condition. Geophysical Journal International, 212(1): 422—441. doi: 10.1093/gji/ggx397
    Kumar N. , Narayan J. P. , 2019. Effects of site-city interaction and polarization of the incident S-wave on the transfer function and fundamental frequency of structures. Natural Hazards, 97(2): 747—774. doi: 10.1007/s11069-019-03671-8
    Li W. T. , Chen Q. J. , 2020. Seismic damage evaluation of an entire underground subway system in dense urban areas by 3 D FE simulation. Tunneling and Underground Space Technology, 99: 103351. doi: 10.1016/j.tust.2020.103351
    Long H. , Wang Z. C. , Zhang C. S. , et al. , 2021. Nonlinear study on the structure-soil-structure interaction of seismic response among high-rise buildings. Engineering Structures, 242: 112550. doi: 10.1016/j.engstruct.2021.112550
    Schwan L. , Boutin C. , Padrón L. A. , et al. , 2016. Site-city interaction: theoretical, numerical and experimental crossed-analysis. Geophysical Journal International, 205(2): 1006—1031. doi: 10.1093/gji/ggw049
    Wang G. B. , Ba F. , Miao Y. , et al. , 2022 a. Design of multi-array shaking table tests under uniform and non-uniform earthquake excitations. Soil Dynamics and Earthquake Engineering, 153: 107114. doi: 10.1016/j.soildyn.2021.107114
    Wang J. S. , Guo T. , Du Z. Y. , 2022 b. Experimental and numerical study on the influence of dynamic structure-soil-structure interaction on the responses of two adjacent idealized structural systems. Journal of Building Engineering, 52: 104454. doi: 10.1016/j.jobe.2022.104454
    Wang J. S. , Guo T. , Du Z. Y. , et al. , 2022 c. Shaking table tests and parametric analysis of dynamic interaction between soft soil and structure group. Engineering Structures, 256: 114041. doi: 10.1016/j.engstruct.2022.114041
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  23
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-06
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回