• ISSN 1673-5722
  • CN 11-5429/P

横墙对框架结构动力响应的影响分析

王波 罗若帆 宣越 阿拉塔 董孝曜

王波,罗若帆,宣越,阿拉塔,董孝曜,2022. 横墙对框架结构动力响应的影响分析. 震灾防御技术,17(3):589−598. doi:10.11899/zzfy20220318. doi: 10.11899/zzfy20220318
引用本文: 王波,罗若帆,宣越,阿拉塔,董孝曜,2022. 横墙对框架结构动力响应的影响分析. 震灾防御技术,17(3):589−598. doi:10.11899/zzfy20220318. doi: 10.11899/zzfy20220318
Wang Bo, Luo Ruofan, Xuan Yue, A Lata, Dong Xiaoyao. Analysis of Influence of Transverse Wall on Dynamic Response of Frame Structures[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 589-598. doi: 10.11899/zzfy20220318
Citation: Wang Bo, Luo Ruofan, Xuan Yue, A Lata, Dong Xiaoyao. Analysis of Influence of Transverse Wall on Dynamic Response of Frame Structures[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 589-598. doi: 10.11899/zzfy20220318

横墙对框架结构动力响应的影响分析

doi: 10.11899/zzfy20220318
基金项目: 中央高校基本科研业务费专项资助项目(ZY20210304);廊坊市科学技术研究与发展计划自筹经费项目(2021013089);地震科技星火计划青年项目(XH22022YA)
详细信息
    作者简介:

    王波,男,生于1989年。博士,讲师。主要从事结构地震倒塌机理研究。E-mail:wangbo0808@126.com

    通讯作者:

    罗若帆,男,生于1988年。博士研究生,讲师。主要从事结构抗震研究。E-mail:jylrf@jyu.edu.cn

Analysis of Influence of Transverse Wall on Dynamic Response of Frame Structures

  • 摘要: 填充墙具有显著的刚度和承载力贡献。建筑结构震害调查发现,不开洞横墙的破坏程度远小于开洞纵墙的破坏程度,从宏观现象可判断大部分多层建筑的破坏主要由结构纵向运动造成。为研究横墙在地震作用下的性能及其对结构整体动力响应的影响,以经受2021年5月21日云南漾濞6.4级地震震害的花椒园小学教学楼为研究对象,按当地抗震计算参数进行弹塑性时程分析。采用等效斜压杆模拟横向填充墙,设置无填充墙框架结构、带黏土砖墙的框架结构、带空心砖墙的框架结构和带加气混凝土砌块填充墙的框架结构模型,选取10组地震波横向输入。研究结果表明,4种结构自振周期均处于具有统计学意义的平台段,平均加速度响应较接近,质量和刚度变化不会使结构加速度产生规律的变化;受结构自重影响,无填充墙的框架结构底部剪力小于带填充墙的框架结构,带填充墙的框架结构位移远小于无填充墙的框架结构;带有多道不开洞横墙的多层框架结构的破坏主要是由结构纵向破坏引起的。
  • 图  1  花椒园小学教学楼震害

    Figure  1.  Seismic damages of school building of Huajiaoyuan elementary school

    图  2  花椒园小学教学楼首层结构布置

    Figure  2.  Structural layout of first floor of Huajiaoyuan teaching building

    图  3  墙体滞回曲线

    Figure  3.  Hysteresis curves of simulated and tested models

    图  4  结构模型

    Figure  4.  Models of frame and frame with infilled walls

    图  5  材料应力-应变关系曲线

    Figure  5.  Stress-strain curves of materials

    图  6  地震记录的反应谱

    Figure  6.  Response spectra of the motion records

    图  7  相对速度时程

    Figure  7.  Time history of relative velocity

    图  8  结构构件塑性状态

    Figure  8.  The structural members entering plastic state

    表  1  拟静力试验材料参数(单位:兆帕)

    Table  1.   Material parameters of quasi-static test (Unit: MPa)

    墙体类型混凝土立方体
    抗压强度fcu
    梁钢筋屈服
    强度fy
    梁钢筋极限
    强度fu
    梁钢筋弹性
    模量Es
    柱钢筋屈服
    强度fy
    柱钢筋极限
    强度fu
    柱钢筋弹性
    模量Es
    砌体抗压
    强度fu
    砌体弹性
    模量Em
    黏土砖墙34.5346529206 000348467201 0005.404 622
    空心砖墙2.305 270
    加气砌块墙2.523 102
    下载: 导出CSV

    表  2  地震动记录

    Table  2.   Ground motion records

    工况名称事件时间台站编码PGA/Gal记录持时/s截波后持时/s
    M12011-03-11AKTH1630.97030047
    M22001-12-02AOMH0621.86529621
    M32005-10-22FKS01721.47011417
    M42003-09-29HKD09822.65214349
    M52016-11-22IBR01141.28130049
    M62008-06-14IWT010287.28823827
    M72008-07-24IWT020222.16121319
    M82016-04-14KMM00436.74913836
    M92004-10-27NIG01880.68211936
    M102004-10-23NIGH1725.82126334
    下载: 导出CSV

    表  3  结构特性

    Table  3.   Characteristics of structures

    结构类型自振周期/sy向自振周期差异率/%结构自重/kN自重差异率/%
    x向平动y向平动z向扭转
    无填充墙的框架结构0.268 10.286 80.258 43 719.1
    带黏土砖墙的框架结构0.268 10.154 80.152 746.04 340.316.7
    带空心砖墙的框架结构0.268 10.148 20.146 748.34 057.39.1
    带加气砌块墙的框架结构0.268 10.170 80.167 140.43 908.95.1
    下载: 导出CSV

    表  4  结构绝对加速度最大值

    Table  4.   Maximum values of absolute acceleration

    结构类型绝对加速度最大值/g
    M1工况M2工况M3工况M4工况M5工况M6工况M7工况M8工况M9工况M10工况平均值
    无填充墙的框架结构0.4680.5060.3870.4500.4240.4570.4910.4730.4580.5180.463 2
    带黏土砖墙的框架结构0.5670.5080.5390.4410.5010.5770.4790.5650.4940.5170.518 8
    带空心砖墙的框架结构0.5610.4740.4620.4440.4760.5590.5070.5790.4500.5140.502 6
    带加气砌块墙的框架结构0.4760.5520.5450.4960.4430.6160.5840.5800.5030.5710.536 6
    下载: 导出CSV

    表  5  结构底部剪力最大值

    Table  5.   Maximum values of base shear force

    结构类型剪力最大值/kN
    M1工况M2工况M3工况M4工况M5工况M6工况M7工况M8工况M9工况M10工况平均值
    无填充墙的框架结构1 190.11 286.61 152.61 279.11 241.71 233.71 391.01 266.51 379.11 370.51 279.1
    带黏土砖墙的框架结构2 200.71 857.91 956.42 197.02 046.72 645.51 955.12 433.52 574.02 155.92 202.3
    带空心砖墙的框架结构2 036.81 738.61 742.51 989.51 877.32 261.71 946.62 161.72 251.11 937.41 994.3
    带加气砌块墙的框架结构2 022.71 996.72 447.02 227.51 928.02 421.72 224.42 382.92 220.32 140.62 201.2
    下载: 导出CSV

    表  6  相对位移最大值

    Table  6.   Maximum values of relative displacement

    结构类型相对位移最大值/mm
    M1工况M2工况M3工况M4工况M5工况M6工况M7工况M8工况M9工况M10工况平均值
    无填充墙的框架结构12.716.610.213.913.111.516.814.518.914.914.31
    带黏土砖墙的框架结构4.73.53.63.94.35.03.94.45.83.84.29
    带空心砖墙的框架结构4.43.13.13.93.85.34.14.76.43.54.23
    带加气砌块墙的框架结构4.94.86.55.14.76.15.06.95.95.45.53
    下载: 导出CSV
  • 郭迅, 2009. 汶川大地震震害特点与成因分析. 地震工程与工程振动, 29(6): 74—87 doi: 10.13197/j.eeev.2009.06.008

    Guo X. , 2009. Characteristics and mechanism analysis of the great Wenchuan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 29(6): 74—87. (in Chinese) doi: 10.13197/j.eeev.2009.06.008
    黄群贤, 2011. 新型砌体填充墙框架结构抗震性能与弹塑性地震反应分析方法研究. 泉州: 华侨大学.

    Huang Q. X., 2011. Study on seismic behavior and elastic-plastic analysis method for seismic responses of RC frame infilled with new masonry. Quanzhou: Huaqiao University. (in Chinese)
    黄群贤, 郭子雄, 朱雁茹等, 2012. 混凝土空心砌块填充墙RC框架抗震性能试验研究. 建筑结构学报, 33(2): 110—118 doi: 10.14006/j.jzjgxb.2012.02.015

    Huang Q. X. , Guo Z. X. , Zhu Y. R. , et al. , 2012. Experimental study on seismic behavior of RC frames infilled with concrete hollow blocks. Journal of Building Structures, 33(2): 110—118. (in Chinese) doi: 10.14006/j.jzjgxb.2012.02.015
    金焕, 戴君武, 2013. 外廊式RC框架结构教学楼的抗震性能研究. 土木工程学报, 46(5): 71—77 doi: 10.15951/j.tmgcxb.2013.05.019

    Jin H. , Dai J. W. , 2013. Study on seismic behavior of side corridor RC frame school building. China Civil Engineering Journal, 46(5): 71—77. (in Chinese) doi: 10.15951/j.tmgcxb.2013.05.019
    刘桂秋, 2005. 砌体结构基本受力性能的研究. 长沙: 湖南大学.

    Liu G. Q., 2005. The research on the basic mechanical behavior of masonry structure. Changsha: Hunan University. (in Chinese)
    罗若帆, 郭迅, 阿拉塔等, 2021. 漾濞6.4级地震外廊式教学楼震害调查与分析. 世界地震工程, 37(4): 53—63 doi: 10.3969/j.issn.1007-6069.2021.04.007

    Luo R. F. , Guo X. , Alata, et al. , 2021. Investigation and analysis of seismic damage to side corridor school buildings in M 6.4 Yangbi earthquake. World Earthquake Engineering, 37(4): 53—63. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.04.007
    潘毅, 季晨龙, 王超等, 2012. 日本地震中钢筋混凝土框架结构震害及分析. 工程抗震与加固改造, 34(4): 122—127, 133 doi: 10.3969/j.issn.1002-8412.2012.04.023

    Pan Y. , Ji X. L. , Wang C. , et al. , 2012. Seismic damage analysis of the reinforced concrete frame structures in Japanese earthquake. Earthquake Resistant Engineering and Retrofitting, 34(4): 122—127, 133. (in Chinese) doi: 10.3969/j.issn.1002-8412.2012.04.023
    潘毅, 张弛, 高宪等, 2016. 台湾美浓6.7级地震框架结构震害调查与分析. 土木工程学报, 49(S1): 13—18 doi: 10.15951/j.tmgcxb.2016.s1.003

    Pan Y. , Zhang C. , Gao X. , et al. , 2016. Earthquake damage investigation and analysis of the RC frame structures in Taiwan Meinung MS 6.7 earthquake. China Civil Engineering Journal, 49(S1): 13—18. (in Chinese) doi: 10.15951/j.tmgcxb.2016.s1.003
    唐兴荣, 周振轶, 刘利花等, 2012. 多层砌体填充墙框架结构抗震性能试验研究. 建筑结构学报, 33(11): 72—81 doi: 10.14006/j.jzjgxb.2012.11.009

    Tang X. R. , Zhou Z. Y. , Liu L. H. , et al. , 2012. Experimental study on seismic behavior of multi-story masonry infilled reinforced concrete frame structures. Journal of Building Structures, 33(11): 72—81. (in Chinese) doi: 10.14006/j.jzjgxb.2012.11.009
    王波, 郭迅, 宣越等, 2021. 设置半高连续填充墙的RC框架结构地震倒塌振动台试验. 应用基础与工程科学学报, 29(3): 656-668 doi: 10.16058/j.issn.1005-0930.2021.03.011

    Wang B. , Guo X. , Xuan Y. , et al. , 2021. Shaking table test on collapse mechanism of RC frame with continuous half-height infilled walls. Journal of Basic Science and Engineering, 29(3): 656—668. (in Chinese) doi: 10.16058/j.issn.1005-0930.2021.03.011
    王翠坤, 杨沈, 2008. 汶川地震对建筑结构设计的启示. 震灾防御技术, 3(3): 230—236 doi: 10.3969/j.issn.1673-5722.2008.03.004

    Wang C. K. , Yang S. , 2008. Some thought on building structure inspired from Wenchuan earthquake. Technology for Earthquake Disaster Prevention, 3(3): 230—236. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.03.004
    闫培雷, 孙柏涛, 张昊宇, 2014. 芦山7.0级强烈地震钢筋混凝土框架结构教学楼震害. 土木工程学报, 47(S1): 24—28 doi: 10.15951/j.tmgcxb.2014.s1.005

    Yan P. L. , Sun B. T. , Zhang H. Y. , 2014. Seismic damage to RC frame teaching buildings in Lushan MS 7.0 earthquake. China Civil Engineering Journal, 47(S1): 24-28. (in Chinese) doi: 10.15951/j.tmgcxb.2014.s1.005
    杨伟松, 陶柱, 郭迅等, 2021. 填充墙外廊式RC框架结构倒塌振动台试验研究. 建筑结构学报. (2021-06-08)[2022-02-20]. https://kns. cnki. net/kcms/detail/11.1931.TU.20210608.1052.001.html.

    Yang W. S. , Tao Z. , Guo X. , et al. , 2021. Shaking table collapse test on exterior corridor RC frame with infill walls. Journal of Building Structures. (2021-06-08)[2022-02-20]. https://kns.cnki.net/kcms/detail/11.1931.TU.20210608.1052.001.html. (in Chinese)
    叶列平, 曲哲, 马千里等, 2008. 从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现. 建筑结构, 38(11): 52—59, 67 doi: 10.19701/j.jzjg.2008.11.017

    Ye L. P. , Qu Z. , Ma Q. L. , et al. , 2008. Study on ensuring the strong column-weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake. Building Structure, 38(11): 52—59, 67. (in Chinese) doi: 10.19701/j.jzjg.2008.11.017
    仉国栋, 才仁昂布, 杨青顺等, 2013. 玉树地震建筑震害分析. 青海大学学报(自然科学版), 31(6): 91—98

    Zhang G. D. , Cairen A. B. , Yang Q. S. , et al. , 2013. Analysis of building structure damage in Yushu earthquake. Journal of Qinghai University (Natural Science Edition), 31(6): 91—98. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(附条文说明)(2016年版). 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范(2015年版). 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese)
    Federal Emergency Management Agency, 2000. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency.
    Kakaletsis D. J. , Karayannis C. G. , 2009. Experimental investigation of infilled reinforced concrete frames with openings. ACI Structural Journal, 106(2): 132—141.
    Mallick D. V. , Severn R. T. , 1967. The behaviour of infilled frames under static loading. Proceedings of the Institution of Civil Engineers, 38(4): 639—656. doi: 10.1680/iicep.1967.8192
    Mehrabi A. B. , Shing P. B. , Schuller M. P. , et al. , 1996. Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering, 122(3): 228—237. doi: 10.1061/(ASCE)0733-9445(1996)122:3(228)
    Mosalam K. M. , White R. N. , Gergely P. , 1997. Static response of infilled frames using quasi-static experimentation. Journal of Structural Engineering, 123(11): 1462—1469. doi: 10.1061/(ASCE)0733-9445(1997)123:11(1462)
    Paulay T. , Priestley M. J. N. , 1992. Seismic design of reinforced concrete and masonry buildings. New York: John Wiley & Sons, Inc.
    Scott B. D. , Park R. , Priestley M. J. N. , 1982. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. Journal of the American Concrete Institute, 79(1): 13—27.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  37
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回