Analysis of Influence of Transverse Wall on Dynamic Response of Frame Structures
-
摘要: 填充墙具有显著的刚度和承载力贡献。建筑结构震害调查发现,不开洞横墙的破坏程度远小于开洞纵墙的破坏程度,从宏观现象可判断大部分多层建筑的破坏主要由结构纵向运动造成。为研究横墙在地震作用下的性能及其对结构整体动力响应的影响,以经受2021年5月21日云南漾濞6.4级地震震害的花椒园小学教学楼为研究对象,按当地抗震计算参数进行弹塑性时程分析。采用等效斜压杆模拟横向填充墙,设置无填充墙框架结构、带黏土砖墙的框架结构、带空心砖墙的框架结构和带加气混凝土砌块填充墙的框架结构模型,选取10组地震波横向输入。研究结果表明,4种结构自振周期均处于具有统计学意义的平台段,平均加速度响应较接近,质量和刚度变化不会使结构加速度产生规律的变化;受结构自重影响,无填充墙的框架结构底部剪力小于带填充墙的框架结构,带填充墙的框架结构位移远小于无填充墙的框架结构;带有多道不开洞横墙的多层框架结构的破坏主要是由结构纵向破坏引起的。Abstract: The infilled wall has significant contribution to the stiffness and bearing capacity. The seismic damage survey of buildings shows that the damage of the transverse wall without opening holes is much less than that of the longitudinal wall with opening holes. It can be inferred from the phenomenon that most of the damage of the multi-story building is caused by the longitudinal movement of the structure. To study the performance of building transverse wall under the earthquake and its influence on the dynamic response of the whole structure, the teaching building of Huajiaoyuan Elementary School in the site of M6.4 Yangbi earthquake on May 21, 2021 is taken as the research object. The elasto-plastic time history analysis was carried out by using the local seismic calculation parameters. The equivalent inclined support was used to simulate the transverse infilled wall, and four research models were set up, namely pure frame, clay brick infilled wall, hollow brick infilled wall and aerated concrete block infilled wall. Ten groups of lateral input of seismic waves were selected. The results show that the natural periods of the four structures are all in the platform segment with statistical significance, and the average acceleration response is relatively close. The change of mass and stiffness will not have a regular change on the structural acceleration. Due to the weight of the structures, the base shear force of the pure frame structure is smaller than that of the structures with infilled walls. The displacement of the structures with infilled wall is much smaller than that of the pure frame structure. That the longitudinal failure is dominant in the multi-story frame structure with some transverse walls without opening holes.
-
表 1 拟静力试验材料参数(单位:兆帕)
Table 1. Material parameters of quasi-static test (Unit: MPa)
墙体类型 混凝土立方体
抗压强度fcu梁钢筋屈服
强度fy梁钢筋极限
强度fu梁钢筋弹性
模量Es柱钢筋屈服
强度fy柱钢筋极限
强度fu柱钢筋弹性
模量Es砌体抗压
强度fu砌体弹性
模量Em黏土砖墙 34.5 346 529 206 000 348 467 201 000 5.40 4 622 空心砖墙 2.30 5 270 加气砌块墙 2.52 3 102 表 2 地震动记录
Table 2. Ground motion records
工况名称 事件时间 台站编码 PGA/Gal 记录持时/s 截波后持时/s M1 2011-03-11 AKTH16 30.970 300 47 M2 2001-12-02 AOMH06 21.865 296 21 M3 2005-10-22 FKS017 21.470 114 17 M4 2003-09-29 HKD098 22.652 143 49 M5 2016-11-22 IBR011 41.281 300 49 M6 2008-06-14 IWT010 287.288 238 27 M7 2008-07-24 IWT020 222.161 213 19 M8 2016-04-14 KMM004 36.749 138 36 M9 2004-10-27 NIG018 80.682 119 36 M10 2004-10-23 NIGH17 25.821 263 34 表 3 结构特性
Table 3. Characteristics of structures
结构类型 自振周期/s y向自振周期差异率/% 结构自重/kN 自重差异率/% x向平动 y向平动 z向扭转 无填充墙的框架结构 0.268 1 0.286 8 0.258 4 — 3 719.1 — 带黏土砖墙的框架结构 0.268 1 0.154 8 0.152 7 46.0 4 340.3 16.7 带空心砖墙的框架结构 0.268 1 0.148 2 0.146 7 48.3 4 057.3 9.1 带加气砌块墙的框架结构 0.268 1 0.170 8 0.167 1 40.4 3 908.9 5.1 表 4 结构绝对加速度最大值
Table 4. Maximum values of absolute acceleration
结构类型 绝对加速度最大值/g M1工况 M2工况 M3工况 M4工况 M5工况 M6工况 M7工况 M8工况 M9工况 M10工况 平均值 无填充墙的框架结构 0.468 0.506 0.387 0.450 0.424 0.457 0.491 0.473 0.458 0.518 0.463 2 带黏土砖墙的框架结构 0.567 0.508 0.539 0.441 0.501 0.577 0.479 0.565 0.494 0.517 0.518 8 带空心砖墙的框架结构 0.561 0.474 0.462 0.444 0.476 0.559 0.507 0.579 0.450 0.514 0.502 6 带加气砌块墙的框架结构 0.476 0.552 0.545 0.496 0.443 0.616 0.584 0.580 0.503 0.571 0.536 6 表 5 结构底部剪力最大值
Table 5. Maximum values of base shear force
结构类型 剪力最大值/kN M1工况 M2工况 M3工况 M4工况 M5工况 M6工况 M7工况 M8工况 M9工况 M10工况 平均值 无填充墙的框架结构 1 190.1 1 286.6 1 152.6 1 279.1 1 241.7 1 233.7 1 391.0 1 266.5 1 379.1 1 370.5 1 279.1 带黏土砖墙的框架结构 2 200.7 1 857.9 1 956.4 2 197.0 2 046.7 2 645.5 1 955.1 2 433.5 2 574.0 2 155.9 2 202.3 带空心砖墙的框架结构 2 036.8 1 738.6 1 742.5 1 989.5 1 877.3 2 261.7 1 946.6 2 161.7 2 251.1 1 937.4 1 994.3 带加气砌块墙的框架结构 2 022.7 1 996.7 2 447.0 2 227.5 1 928.0 2 421.7 2 224.4 2 382.9 2 220.3 2 140.6 2 201.2 表 6 相对位移最大值
Table 6. Maximum values of relative displacement
结构类型 相对位移最大值/mm M1工况 M2工况 M3工况 M4工况 M5工况 M6工况 M7工况 M8工况 M9工况 M10工况 平均值 无填充墙的框架结构 12.7 16.6 10.2 13.9 13.1 11.5 16.8 14.5 18.9 14.9 14.31 带黏土砖墙的框架结构 4.7 3.5 3.6 3.9 4.3 5.0 3.9 4.4 5.8 3.8 4.29 带空心砖墙的框架结构 4.4 3.1 3.1 3.9 3.8 5.3 4.1 4.7 6.4 3.5 4.23 带加气砌块墙的框架结构 4.9 4.8 6.5 5.1 4.7 6.1 5.0 6.9 5.9 5.4 5.53 -
郭迅, 2009. 汶川大地震震害特点与成因分析. 地震工程与工程振动, 29(6): 74—87 doi: 10.13197/j.eeev.2009.06.008Guo X. , 2009. Characteristics and mechanism analysis of the great Wenchuan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 29(6): 74—87. (in Chinese) doi: 10.13197/j.eeev.2009.06.008 黄群贤, 2011. 新型砌体填充墙框架结构抗震性能与弹塑性地震反应分析方法研究. 泉州: 华侨大学.Huang Q. X., 2011. Study on seismic behavior and elastic-plastic analysis method for seismic responses of RC frame infilled with new masonry. Quanzhou: Huaqiao University. (in Chinese) 黄群贤, 郭子雄, 朱雁茹等, 2012. 混凝土空心砌块填充墙RC框架抗震性能试验研究. 建筑结构学报, 33(2): 110—118 doi: 10.14006/j.jzjgxb.2012.02.015Huang Q. X. , Guo Z. X. , Zhu Y. R. , et al. , 2012. Experimental study on seismic behavior of RC frames infilled with concrete hollow blocks. Journal of Building Structures, 33(2): 110—118. (in Chinese) doi: 10.14006/j.jzjgxb.2012.02.015 金焕, 戴君武, 2013. 外廊式RC框架结构教学楼的抗震性能研究. 土木工程学报, 46(5): 71—77 doi: 10.15951/j.tmgcxb.2013.05.019Jin H. , Dai J. W. , 2013. Study on seismic behavior of side corridor RC frame school building. China Civil Engineering Journal, 46(5): 71—77. (in Chinese) doi: 10.15951/j.tmgcxb.2013.05.019 刘桂秋, 2005. 砌体结构基本受力性能的研究. 长沙: 湖南大学.Liu G. Q., 2005. The research on the basic mechanical behavior of masonry structure. Changsha: Hunan University. (in Chinese) 罗若帆, 郭迅, 阿拉塔等, 2021. 漾濞6.4级地震外廊式教学楼震害调查与分析. 世界地震工程, 37(4): 53—63 doi: 10.3969/j.issn.1007-6069.2021.04.007Luo R. F. , Guo X. , Alata, et al. , 2021. Investigation and analysis of seismic damage to side corridor school buildings in M 6.4 Yangbi earthquake. World Earthquake Engineering, 37(4): 53—63. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.04.007 潘毅, 季晨龙, 王超等, 2012. 日本地震中钢筋混凝土框架结构震害及分析. 工程抗震与加固改造, 34(4): 122—127, 133 doi: 10.3969/j.issn.1002-8412.2012.04.023Pan Y. , Ji X. L. , Wang C. , et al. , 2012. Seismic damage analysis of the reinforced concrete frame structures in Japanese earthquake. Earthquake Resistant Engineering and Retrofitting, 34(4): 122—127, 133. (in Chinese) doi: 10.3969/j.issn.1002-8412.2012.04.023 潘毅, 张弛, 高宪等, 2016. 台湾美浓6.7级地震框架结构震害调查与分析. 土木工程学报, 49(S1): 13—18 doi: 10.15951/j.tmgcxb.2016.s1.003Pan Y. , Zhang C. , Gao X. , et al. , 2016. Earthquake damage investigation and analysis of the RC frame structures in Taiwan Meinung MS 6.7 earthquake. China Civil Engineering Journal, 49(S1): 13—18. (in Chinese) doi: 10.15951/j.tmgcxb.2016.s1.003 唐兴荣, 周振轶, 刘利花等, 2012. 多层砌体填充墙框架结构抗震性能试验研究. 建筑结构学报, 33(11): 72—81 doi: 10.14006/j.jzjgxb.2012.11.009Tang X. R. , Zhou Z. Y. , Liu L. H. , et al. , 2012. Experimental study on seismic behavior of multi-story masonry infilled reinforced concrete frame structures. Journal of Building Structures, 33(11): 72—81. (in Chinese) doi: 10.14006/j.jzjgxb.2012.11.009 王波, 郭迅, 宣越等, 2021. 设置半高连续填充墙的RC框架结构地震倒塌振动台试验. 应用基础与工程科学学报, 29(3): 656-668 doi: 10.16058/j.issn.1005-0930.2021.03.011Wang B. , Guo X. , Xuan Y. , et al. , 2021. Shaking table test on collapse mechanism of RC frame with continuous half-height infilled walls. Journal of Basic Science and Engineering, 29(3): 656—668. (in Chinese) doi: 10.16058/j.issn.1005-0930.2021.03.011 王翠坤, 杨沈, 2008. 汶川地震对建筑结构设计的启示. 震灾防御技术, 3(3): 230—236 doi: 10.3969/j.issn.1673-5722.2008.03.004Wang C. K. , Yang S. , 2008. Some thought on building structure inspired from Wenchuan earthquake. Technology for Earthquake Disaster Prevention, 3(3): 230—236. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.03.004 闫培雷, 孙柏涛, 张昊宇, 2014. 芦山7.0级强烈地震钢筋混凝土框架结构教学楼震害. 土木工程学报, 47(S1): 24—28 doi: 10.15951/j.tmgcxb.2014.s1.005Yan P. L. , Sun B. T. , Zhang H. Y. , 2014. Seismic damage to RC frame teaching buildings in Lushan MS 7.0 earthquake. China Civil Engineering Journal, 47(S1): 24-28. (in Chinese) doi: 10.15951/j.tmgcxb.2014.s1.005 杨伟松, 陶柱, 郭迅等, 2021. 填充墙外廊式RC框架结构倒塌振动台试验研究. 建筑结构学报. (2021-06-08)[2022-02-20]. https://kns. cnki. net/kcms/detail/11.1931.TU.20210608.1052.001.html.Yang W. S. , Tao Z. , Guo X. , et al. , 2021. Shaking table collapse test on exterior corridor RC frame with infill walls. Journal of Building Structures. (2021-06-08)[2022-02-20]. https://kns.cnki.net/kcms/detail/11.1931.TU.20210608.1052.001.html. (in Chinese) 叶列平, 曲哲, 马千里等, 2008. 从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现. 建筑结构, 38(11): 52—59, 67 doi: 10.19701/j.jzjg.2008.11.017Ye L. P. , Qu Z. , Ma Q. L. , et al. , 2008. Study on ensuring the strong column-weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake. Building Structure, 38(11): 52—59, 67. (in Chinese) doi: 10.19701/j.jzjg.2008.11.017 仉国栋, 才仁昂布, 杨青顺等, 2013. 玉树地震建筑震害分析. 青海大学学报(自然科学版), 31(6): 91—98Zhang G. D. , Cairen A. B. , Yang Q. S. , et al. , 2013. Analysis of building structure damage in Yushu earthquake. Journal of Qinghai University (Natural Science Edition), 31(6): 91—98. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(附条文说明)(2016年版). 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) 中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范(2015年版). 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese) Federal Emergency Management Agency, 2000. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency. Kakaletsis D. J. , Karayannis C. G. , 2009. Experimental investigation of infilled reinforced concrete frames with openings. ACI Structural Journal, 106(2): 132—141. Mallick D. V. , Severn R. T. , 1967. The behaviour of infilled frames under static loading. Proceedings of the Institution of Civil Engineers, 38(4): 639—656. doi: 10.1680/iicep.1967.8192 Mehrabi A. B. , Shing P. B. , Schuller M. P. , et al. , 1996. Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering, 122(3): 228—237. doi: 10.1061/(ASCE)0733-9445(1996)122:3(228) Mosalam K. M. , White R. N. , Gergely P. , 1997. Static response of infilled frames using quasi-static experimentation. Journal of Structural Engineering, 123(11): 1462—1469. doi: 10.1061/(ASCE)0733-9445(1997)123:11(1462) Paulay T. , Priestley M. J. N. , 1992. Seismic design of reinforced concrete and masonry buildings. New York: John Wiley & Sons, Inc. Scott B. D. , Park R. , Priestley M. J. N. , 1982. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. Journal of the American Concrete Institute, 79(1): 13—27.