• ISSN 1673-5722
  • CN 11-5429/P

建筑结构监测与抗震韧性评估

王飞 康现栋 刘影 陈宏宇

王飞,康现栋,刘影,陈宏宇,2022. 建筑结构监测与抗震韧性评估. 震灾防御技术,17(3):569−578. doi:10.11899/zzfy20220316. doi: 10.11899/zzfy20220316
引用本文: 王飞,康现栋,刘影,陈宏宇,2022. 建筑结构监测与抗震韧性评估. 震灾防御技术,17(3):569−578. doi:10.11899/zzfy20220316. doi: 10.11899/zzfy20220316
Wang Fei, Kang Xiandong, Liu Ying, Chen Hongyu. Structural Monitoring and Seismic Resilience Evaluation of Buildings[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 569-578. doi: 10.11899/zzfy20220316
Citation: Wang Fei, Kang Xiandong, Liu Ying, Chen Hongyu. Structural Monitoring and Seismic Resilience Evaluation of Buildings[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 569-578. doi: 10.11899/zzfy20220316

建筑结构监测与抗震韧性评估

doi: 10.11899/zzfy20220316
基金项目: 地震科技星火计划项目(XH17001);北京市地震局2022年面上项目(BJMS-2022002)
详细信息
    作者简介:

    王飞,男,生于1979年。副研究员。主要从事结构监测与抗震研究。E-mail:wangfei@bjseis.gov.cn

Structural Monitoring and Seismic Resilience Evaluation of Buildings

  • 摘要: 建筑结构响应是有效反映结构动力特性的最直接参数,开展结构动力响应实时监测可为结构抗震韧性评估提供准确的地震动输入。本文基于非结构构件损失构建结构抗震韧性评估方法,研究确定位移敏感型和加速度敏感型非结构构件的易损性模型。选择某六层钢筋混凝土框架结构进行实时监测系统建设,基于监测数据开展结构抗震韧性评估。通过构建建筑信息模型(BIM),并在有限元分析软件OpenSees中建立结构弹塑性分析模型,利用实时监测数据实现结构模型更新,直至监测数据与模型分析结果一致。由于实时监测数据峰值较低,结构不会发生塑性变形,因此选择10条双向非脉冲地震动模拟实时监测地震记录。根据层间位移角和楼面加速度分布,开展结构功能损失评估,得到该建筑结构的抗震韧性得分。分析表明,该结构抗震性能较好,在遭受地震破坏后,会发生非结构构件脱落,需要采取有效措施进一步提升建筑抗震韧性水平。
  • 图  1  易损性曲线

    Figure  1.  Fragility curves for elements

    图  2  教学楼外立面及BIM模型

    Figure  2.  Elevation of the teaching building and its building information model

    图  3  教学楼结构柱分布图(单位:毫米)

    Figure  3.  Column distribution of the teaching building (Unit:mm)

    图  4  教学楼结构梁分布示意图(单位:毫米)

    Figure  4.  Beam distribution of the teaching building(Unit:mm)

    图  5  地震响应监测系统布设位置及其在河北唐山地震中的地震记录

    Figure  5.  Layout of the sensors and recorder for real-time response monitoring system and its recordings in Tangshan earthquake

    图  6  结构传递函数

    Figure  6.  Transfer function of the building

    图  7  选定的10组地震动反应谱及其均值与8度罕遇地震规范反应谱对比

    Figure  7.  Response spectra of the 10 strong motions and comparing with the standard response spectra of rare earthquake in the site with seismic intensity of VIII

    图  8  罕遇地震动作用下结构层间位移角均值和平均峰值加速度分布

    Figure  8.  The inter-story drift ratio and peak acceleration under the 10 strong motions scaled to the level of the rare earthquake

    表  1  通过地震记录和模拟得到的结构自振周期

    Table  1.   Natural frequencies and mode directions identified from earthquake recordings and simulation

    振型
    编号
    识别周期
    /Hz
    模拟周期
    /Hz
    振型
    方向
    10.6590.663南北
    20.6530.658东西
    30.2520.258南北
    40.2490.254东西
    下载: 导出CSV

    表  2  基于标准反应谱选取的10组地震动

    Table  2.   10 strong ground motions selected on the basis of standard response spectra

    序号地震名称台站名称年份1方向PGA/g2方向PGA/g
    1Friuli,Italy-01Tolmezzo19760.3570.315
    2ImperialValleyDelta19790.3500.236
    3LandersJoshuaTree19920.2840.274
    4Northridge-01CanyonCountry19940.4040.315
    5Northridge-01Castaic19940.5680.514
    6Northridge-01LA-SaturnSt19940.4680.431
    7Kobe_JapanKakogawa19950.3240.240
    8Kobe_JapanShin-Osaka19950.2330.225
    9Chi-Chi_TaiwanCHY03419990.3000.249
    10HectorMineHector19990.3280.265
    下载: 导出CSV

    表  3  吊顶和填充墙易损性参数

    Table  3.   The parameters for the fragility curves of the suspended ceiling and the in-filled wall

    项目吊顶填充墙
    DS1DS2DS1DS2
    易损性参数
    θ0.84401.08200.00120.0024
    β0.3760.3150.3600.360
    损失比/%3010010100
    下载: 导出CSV

    表  4  教学楼功能损伤情况

    Table  4.   The results of the function loss for the teaching building

    楼层LDispLAccRloss jλjRloss jλjRloss
    1层0.999560.373160.7865860.2456750.1932450.69
    2层1.000000.486630.8254530.2578140.212814
    3层0.897550.407360.7308820.2282770.166843
    4层0.554140.480940.5292530.1653020.087487
    5层0.119410.737490.3295590.1029310.033922
    下载: 导出CSV
  • 薄景山, 张毅毅, 郭晓云等, 2021. 结构抗震设计理论与方法的沿革和比较. 震灾防御技术, 16(3): 566−572.

    Bo J. S., Zhang Y. Y., Guo X. Y., et al., 2021. Evolution and comparison of different structural seismic design theories and methods. Technology for Earthquake Disaster Prevention, 16(3): 566−572. (in Chinese)
    陈学伟, 林哲, 2014. 结构弹塑性分析程序OpenSEES原理与实例. 北京: 中国建筑工业出版社.

    Chen X. W., Lin Z., 2014. Structural nonlinear analysis program OpenSEES theory and tutorial. Beijing: China Architecture & Building Press. (in Chinese)
    杜修力, 欧进萍, 1991. 建筑结构地震破坏评估模型. 世界地震工程, (3): 52—58.
    杜修力, 王子理, 刘洪涛, 2018. 基于韧性设计的一种地下框架结构抗震新体系研究. 震灾防御技术, 13(3): 493—501.

    Du X. L., Wang Z. L., Liu H. T., 2018. Study of a seismic new system of underground frame structure based on toughness design. Technology for Earthquake Disaster Prevention, 13(3): 493—501. (in Chinese)
    方东平, 李在上, 李楠等, 2017. 城市韧性——基于“三度空间下系统的系统”的思考. 土木工程学报, 50(7): 1—7.

    Fang D. P., Li Z. S., Li N., et al., 2017. Urban resilience: a perspective of system of systems in trio spaces. China Civil Engineering Journal, 50(7): 1—7. (in Chinese)
    方东平, 李全旺, 李楠等, 2020. 社区地震安全韧性评估系统及应用示范. 工程力学, 37(10): 28—44.

    Fang D. P., Li Q. W., Li N., et al., 2020. An evaluation system for community seismic resilience and its application in a typical community. Engineering Mechanics, 37(10): 28—44. (in Chinese)
    郭迅, 王波, 2019. 建设韧性城乡的技术途径. 震灾防御技术, 14(1): 52—59. doi: 10.11899/zzfy20190106

    Guo X., Wang B., 2019. The way to build resilient urban and rural areas. Technology for Earthquake Disaster Prevention, 14(1): 52—59. (in Chinese) doi: 10.11899/zzfy20190106
    金星, 韦永祥, 陈学良等, 2007. 隔震建筑结构的强震观测与初步分析. 地震工程与工程振动, 27(6): 181—188.

    Jin X., Wei Y. X., Chen X. L., et al., 2007. Strong motion observation for a base-isolated building and its primary analysis. Journal of Earthquake Engineering and Engineering Vibration, 27(6): 181—188. (in Chinese)
    金星, 韦永祥, 张红才等, 2009. 基于强震观测的隔震结构地震反应分析. 地震工程与工程振动, 29(2): 19—28.

    Jin X., Wei Y. X., Zhang H. C., et al., 2009. Analysis of the seismic responses of a base-isolated building on the basis of strong motion observation. Journal of Earthquake Engineering and Engineering Vibration, 29(2): 19—28. (in Chinese)
    康现栋, 付皓然, 赵光等, 2021. 单体建筑抗震韧性评估方法研究与应用. 土木工程学报, 54(8): 37—42. doi: 10.15951/j.tmgcxb.2021.08.003

    Kang X. D., Fu H. R., Zhao G., et al., 2021. Research and application of evaluation methods for earthquake resilience of individual building structure. China Civil Engineering Journal, 54(8): 37—42. (in Chinese) doi: 10.15951/j.tmgcxb.2021.08.003
    李鸿晶, 朱士云, Celebi M. , 2003. 强震观测建筑结构的地震反应分析. 地震工程与工程振动, 23(6): 31—36. doi: 10.13197/j.eeev.2003.06.005

    Li H. J., Zhu S. Y., Celebi M., 2003. Seismic response analysis of an instrumented building structure. Earthquake Engineering and Engineering Vibration, 23(6): 31—36. (in Chinese) doi: 10.13197/j.eeev.2003.06.005
    李戚齐, 曲哲, 解全才等, 2019. 我国公共建筑中吊顶的震害特征及其易损性分析. 工程力学, 36(7): 207—215.

    Li Q. Q., Qu Z., Xie Q. C., et al., 2019. Seismic damage characteristics and fragility of suspended ceilings in Chinese public buildings. Engineering Mechanics, 2019, 36(7): 207—215. (in Chinese)
    李文俊, 曲哲, 孙海林等, 2021. 损失分布和非结构损失对房屋建筑地易损性的影响. 世界地震工程, 37(4): 109—121. doi: 10.3969/j.issn.1007-6069.2021.04.013

    Li W. J., Qu Z., Sun H. L., et al., 2021. Influence of loss distribution and non-structural loss on the seismic vulnerability of buildings. World Earthquake Engineering, 37(4): 109—121. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.04.013
    林旭川, 2017. 城市建筑群地震灾害数值仿真与风险控制. 城市与减灾, (3): 18—22. doi: 10.3969/j.issn.1671-0495.2017.03.007
    王飞, 刘英华, 任志林等, 2015. 北京市防震减灾中心结构地震反应观测及振动特性识别. 震灾防御技术, 10(3): 539—546. doi: 10.11899/zzfy20150307

    Wang F., Liu Y. H., Ren Z. L., et al., 2015. Structural seismic vibration observation and identification for the building of disaster reduction center in Beijing. Technology for Earthquake Disaster Prevention, 10(3): 539—546. (in Chinese) doi: 10.11899/zzfy20150307
    王飞, 康现栋, 罗桂纯等, 2020. 唐山古冶5.1级地震北京地区建筑结构地震反应观测记录初步分析. 地震科学进展, 50(7): 20—25. doi: 10.3969/j.issn.2096-7780.2020.07.004

    Wang F., Kang X. D., Luo G. C., et al., 2020. Preliminary analysis of the structural seismic response observation data in Beijing recorded in Guye earthquake with magnitude 5.1. Progress in Earthquake Sciences, 50(7): 20—25. (in Chinese) doi: 10.3969/j.issn.2096-7780.2020.07.004
    王亚勇, 2008. 汶川地震建筑震害启示——抗震概念设计. 建筑结构学报, 29(4): 20—25. doi: 10.3321/j.issn:1000-6869.2008.04.003

    Wang Y. Y., 2008. Lessons learnt from building damages in the Wenchuan earthquake——seismic concept design of buildings. Journal of Building Structures, 29(4): 20—25. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.04.003
    谢礼立, 于双久, 1982. 强震观测与分析原理. 北京: 地震出版社.
    谢贤鑫, 张令心, 曲哲, 2018. 基于修复性的砌体填充墙易损性研究. 建筑结构学报, 39(12): 159—167. doi: 10.14006/j.jzjgxb.2018.12.019

    Xie X. X., Zhang L. X., Qu Z., 2018. Reparability-based fragility analysis of masonry infills in buildings. Journal of Building Structures, 39(12): 159—167. (in Chinese) doi: 10.14006/j.jzjgxb.2018.12.019
    谢贤鑫, 张令心, 曲哲, 2019. 砌体填充墙中塑钢门窗的地震易损性试验研究. 地震工程与工程振动, 39(4): 184—191. doi: 10.13197/j.eeev.2019.04.184.xiexx.019

    Xie X. X., Zhang L. X., Qu Z., 2019. Experimental seismic fragility of windows and doors with plastic-steel frames in masonry infill walls. Earthquake Engineering and Engineering Dynamics, 39(4): 184—191. (in Chinese) doi: 10.13197/j.eeev.2019.04.184.xiexx.019
    尹建华, 冀昆, 崔建文等, 2018. 基于中远场小震结构台阵观测数据的地震响应分析. 震灾防御技术, 13(4): 911—920.

    Yin J. H., Ji K., Cui J. W., et al., 2018. Analysis of structural response by using strong ground motion recordings from middle and far-field small earthquake events. Technology for Earthquake Disaster Prevention, 13(4): 911—920. (in Chinese)
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2012. GB 50003—2011 砌体结构设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2012. GB 50003—2011 Code for design of masonry structures. Beijing: China Architecture & Building Press. (in Chinese)
    周正华, 李铁, 代志勇等, 2004. 建筑结构地震反应观测系统. 地球物理学进展, 19(4): 868—872.

    Zhou Z. H., Li T., Dai Z. Y., et al., 2004. Observation system of responses of building to earthquake. Progress in Geophysics, 19(4): 868—872. (in Chinese)
    Ayers J. M. , Phillips R. , 1996. Northridge earthquake hospital water damage study. Los Angeles: Ayers & Ezers Associates, Inc.
    Bruneau M. , Chang S. E. , Eguchi R. T. , et al. , 2003. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4): 733—752. doi: 10.1193/1.1623497
    FEMA, 2000. FEMA 356-1 Prestandard and commentary for the seismic rehabilitation of buildings. Washington: Federal Emergency Management Agency.
    FEMA, 2012. Seismic performance assessment of buildings. Washington: Federal Emergency Management Agency.
    Miranda E. , Mosqueda G. , Retamales R. , et al. , 2012. Performance of nonstructural components during the 27 February 2010 Chile earthquake. Earthquake Spectra, 28(S1): 453—471.
    Scott B. D. , Park R. , Priestley M. J. N. , 1982. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Structural Journal, 79(1): 13—27.
    Wang D. Z. , Dai J. W. , Qu Z. , et al. , 2016. Shake table tests of suspended ceilings to simulate the observed damage in the MS 7.0 Lushan earthquake, China. Earthquake Engineering and Engineering Vibration, 15(2): 239―249. doi: 10.1007/s11803-016-0319-z
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  39
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回