• ISSN 1673-5722
  • CN 11-5429/P

2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析

木妮拉·局玛洪 艾力夏提·玉山 李瑞 刘代芹 朱治国 陈丽

木妮拉·局玛洪,艾力夏提·玉山,李瑞,刘代芹,朱治国,陈丽,2022. 2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析. 震灾防御技术,17(3):549−556. doi:10.11899/zzfy20220314. doi: 10.11899/zzfy20220314
引用本文: 木妮拉·局玛洪,艾力夏提·玉山,李瑞,刘代芹,朱治国,陈丽,2022. 2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析. 震灾防御技术,17(3):549−556. doi:10.11899/zzfy20220314. doi: 10.11899/zzfy20220314
Munila Jumahong, Ailixiati Yushan, Li Rui, Liu Daiqin, Zhu Zhiguo, Chen Li. Analysis on InSAR Co-seismic Deformation and Slip Distribution Characteristics of 2020 Jiashi MS 6.4 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 549-556. doi: 10.11899/zzfy20220314
Citation: Munila Jumahong, Ailixiati Yushan, Li Rui, Liu Daiqin, Zhu Zhiguo, Chen Li. Analysis on InSAR Co-seismic Deformation and Slip Distribution Characteristics of 2020 Jiashi MS 6.4 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 549-556. doi: 10.11899/zzfy20220314

2020年伽师MS6.4地震InSAR同震形变与滑动分布特征分析

doi: 10.11899/zzfy20220314
基金项目: 新疆维吾尔自治区自然科学基金(2020D01A85、2022D01A106、2022D01B44);地震科技星火计划(XH22007YA、XH20069Y);新疆维吾尔自治区重点研发项目(2020B03006-2);新疆地震科学基金(202113、202114)
详细信息
    作者简介:

    木妮拉·局玛洪,女,生于1983年。硕士,助理工程师。主要从事地震监测工作。E-mail:48792708@qq.com

    通讯作者:

    艾力夏提·玉山,男,生于1984年。高级工程师。主要从事地壳形变与地震重力研究工作。E-mail:irxat@163.com

Analysis on InSAR Co-seismic Deformation and Slip Distribution Characteristics of 2020 Jiashi MS 6.4 Earthquake

  • 摘要: 利用Sentinel-1A升轨和降轨数据,基于D-InSAR技术,获取2020年1月19日伽师MS6.4地震同震形变场,并结合其他研究机构给出的震源机制解参数和已有研究成果,反演得到伽师地震的发震断层几何特征和滑动分布。研究结果表明,伽师地震同震形变在地表有明显差异;升轨同震形变在卫星视线方向北侧抬升55 mm,南侧下降42 mm;降轨同震形变在卫星视线方面北侧抬升63 mm,南侧下降23 mm。通过反演得到发震断层走向为275°,倾角为20°,地震滑动主要分布在地下5 km处,最大滑动量约为0.32 m,平均滑动角为89.3°,累积地震矩为1.46×1018 N·m,合矩震级MW6.1,发震构造为具有少量走滑性质的逆冲断裂。从发震构造特征、同震滑动分布推测,伽师地震发震构造是柯坪塔格褶皱带滑脱面以上沉积盖层内的逆冲断裂,支持了柯坪推覆体的薄皮构造模型观点。
  • 图  1  2020年伽师地震区域构造及SAR数据观测范围

    Figure  1.  Regional tectonics and SAR data range map of 2020 Jiashi earthquake

    图  2  InSAR同震形变场结果

    Figure  2.  Result of coseismic deformation

    图  3  伽师地震滑动分布

    Figure  3.  Slip distribution of Jiashi earthquake

    图  4  滑动分布模型拟合结果

    Figure  4.  Simulation result of slip distribution model

    表  1  干涉影像对参数

    Table  1.   Parameters of interferometric image pairs

    轨道号飞行方向主影像时间副影像时间时间基线/d空间基线/m
    T129升轨2020-01-162020-01-281212.56
    T034降轨2020-01-102020-01-221257.37
    下载: 导出CSV

    表  2  发震断层震源参数对比

    Table  2.   Focal mechanism parameter comparison of seismic fault

    参数来源经度/°纬度/°深度/m走向/°倾角/°滑动角/°震级/MW
    全球矩心矩张量目录77.1939.801219638316.0
    美国地质调查局(MWw77.1139.8319.522120726.0
    美国地质调查局(MWb77.1139.83426291056.1
    德国地学中心77.1039.801022215766.1
    Yao等(202177.8639.31526920926.2
    Yu等(202077.3039.916.327591116.1
    He等(202177.2639.917.3275111036.0
    李成龙等(20214~627015856.0
    张迎峰等(20214~132752090~1206.0~6.1
    张文婷等(202177.2839.90527610.784.16.1
    本文77.3339.83527520896.1
    下载: 导出CSV
  • 艾力夏提·玉山, 刘代芹, 李杰等, 2018. 西南天山地区长时间尺度重力场变化特征. 震灾防御技术, 13(2): 388—398 doi: 10.11899/zzfy20180214

    Ailixiati Y. , Liu D. Q. , Li J. , et al. , 2018. Variation characteristics of long period gravity field in southwestern Tianshan. Technology for Earthquake Disaster Prevention, 13(2): 388—398. (in Chinese) doi: 10.11899/zzfy20180214
    邓启东, 冯先岳, 张培震等, 2000. 天山活动构造. 北京: 地震出版社.

    Deng Q. D., Feng X. Y., Zhang P. Z., et al., 2000. Active tectonics of Tianshan. Beijing: Seismological Press. (in Chinese)
    洪顺英, 申旭辉, 单新建等, 2009. 基于D-InSAR技术的西藏改则地震同震形变场特征分析. 地震, 29(4): 23—31 doi: 10.3969/j.issn.1000-3274.2009.04.003

    Hong S. Y. , Shen X. H. , Shan X. J. , et al. , 2009. Characteristics of coseismic deformation of the 2008 Gaize, Tibet earthquake based on D-InSAR technology. Earthquake, 29(4): 23—31. (in Chinese) doi: 10.3969/j.issn.1000-3274.2009.04.003
    季灵运, 刘传金, 徐晶等, 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析. 地球物理学报, 60(10): 4069—4082 doi: 10.6038/cjg20171032

    Ji L. Y. , Liu C. J. , Xu J. , et al. , 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China. Chinese Journal of Geophysics, 60(10): 4069—4082. (in Chinese) doi: 10.6038/cjg20171032
    李安, 杨晓平, 冉勇康等, 2016. 南天山低角度逆断层古地震破裂变形模式. 震灾防御技术, 11(2): 173—185 doi: 10.11899/zzfy20160201

    Li A. , Yang X. P. , Ran Y. K. , 2016. The paleoearthquake deformation model of the low-angle thrust fault in the south Tianshan. Technology for Earthquake Disaster Prevention, 11(2): 173—185. (in Chinese) doi: 10.11899/zzfy20160201
    李成龙, 张国宏, 单新建等, 2021.2020年1月19日新疆伽师县MS6.4级地震InSAR同震形变场与断层滑动分布反演. 地球物理学进展, 36(2): 481—488 doi: 10.6038/pg2021EE0176

    Li C. L. , Zhang G. H. , Shan X. J. , et al. , 2021. Coseismic deformation and slip distribution of the MS 6.4 Jiashi, Xinjiang earthquake revealed by Sentinel-1 A SAR imagery. Progress in Geophysics, 36(2): 481—488. (in Chinese) doi: 10.6038/pg2021EE0176
    乔学军, 王琪, 杨少敏等, 2014.2008年新疆乌恰MW6.7地震震源机制与形变特征的InSAR研究. 地球物理学报, 57(6): 1805—1813 doi: 10.6038/cjg20140612

    Qiao X. J. , Wang Q. , Yang S. M. , et al. , 2014. Study on the focal mechanism and deformation characteristics for the 2008 MW6.7 Wuqia earthquake, Xinjiang by InSAR. Chinese Journal of Geophysics, 57(6): 1805—1813. (in Chinese) doi: 10.6038/cjg20140612
    张文婷, 季灵运, 朱良玉等, 2021. 南天山前陆盆地的一次典型逆冲破裂事件——2020年新疆伽师6.4级地震. 地震地质, 43(2): 394—409 doi: 10.3969/j.issn.0253-4967.2021.02.009

    Zhang W. T. , Ji L. Y. , Zhu L. Y. , et al. , 2021. A typical thrust rupture event occurring in the foreland basin of the southern Tianshan: the 2020 Xinjiang Jiashi MS6.4 earthquake. Seismology and Geology, 43(2): 394—409. (in Chinese) doi: 10.3969/j.issn.0253-4967.2021.02.009
    张迎峰, 单新建, 张国宏等, 2021.2020年MW6.0柯坪塔格地震的变形特征及其对周边地震危险性的启示. 地震地质, 43(2): 377—393 doi: 10.3969/j.issn.0253-4967.2021.02.008

    Zhang Y. F. , Shan X. J. , Zhang G. H. , et al. , 2021. The deformation of 2020 MW6.0 Kalpintage earthquake and its implication for the regional risk estimates. Seismology and Geology, 43(2): 377—393. (in Chinese) doi: 10.3969/j.issn.0253-4967.2021.02.008
    周传义, 刘国林, 陈洋等, 2019. 基于升降轨Sentinel-1数据分析2017-11-12伊拉克MW7.3地震震源参数. 大地测量与地球动力学, 39(6): 577—582

    Zhou C. Y. , Liu G. L. , Chen Y. , et al. , 2019. Analysis of the source parameters of 2017 Iraq MW7.3 earthquake using Sentinel-1 A InSAR data. Journal of Geodesy and Geodynamics, 39(6): 577—582. (in Chinese)
    Allen M. B. , Vincent S. J. , Wheeler P. J. , 1999. Late Cenozoic tectonics of the Kepingtage thrust zone: interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics, 18(4): 639—654. doi: 10.1029/1999TC900019
    He P. , Wen Y. M. , Li S. P. , et al. , 2021. Present-day orogenic processes in the western Kalpin nappe explored by interseismic GNSS measurements and coseismic InSAR observations of the 2020 MW 6.1 Kalpin event. Geophysical Journal International, 226(2): 928—940. doi: 10.1093/gji/ggab097
    Huang G. C. D. , Roecker S. W. , Levin V. , et al. , 2017. Dynamics of intracontinental convergence between the western Tarim basin and central Tien Shan constrained by centroid moment tensors of regional earthquakes. Geophysical Journal International, 208(1): 561—576. doi: 10.1093/gji/ggw415
    Jónsson S. , Zebker H. , Segall P. , et al. , 2002. Fault slip distribution of the 1999 MW 7.1 Hector mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4): 1377—1389. doi: 10.1785/0120000922
    Khan N. G. , Bai L. , Zhao J. M. , et al. , 2017. Crustal structure beneath Tien Shan orogenic belt and its adjacent regions from multi-scale seismic data. Science China Earth Sciences, 60(10): 1769—1782. doi: 10.1007/s11430-017-9068-0
    Pfiffner O. A. , 2017. Thick-skinned and thin-skinned tectonics: a global perspective. Geosciences, 7(3): 71. doi: 10.3390/geosciences7030071
    Wang H. , Wright T. J. , Biggs J. , 2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36(3): L03302.
    Yao Y. , Wen S. Y. , Li T. , 2021. The 2020 MW 6.0 Jiashi earthquake: a fold earthquake event in the southern Tian Shan, Northwest China. Seismological Research Letters, 92(2 A): 859—869. doi: 10.1785/0220200146
    Yu C. , Li Z. H. , Penna N. T. , et al. , 2018. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. Journal of Geophysical Research: Solid Earth, 123(10): 9202—9222. doi: 10.1029/2017JB015305
    Yu P. F., Qiao X. J., Xiong W., et al., 2020. Source model for the MW 6.0 earthquake in Jiashi, China on 19 January 2020 from Sentinel-1 A InSAR data. Earth, Planets and Space, 72: 169.
    Zhang Y. , Yang S. M. , Chen H. L. , et al. , 2019. The effect of overburden thickness on deformation mechanisms in the Keping fold-thrust belt, southwestern Chinese Tian Shan Mountains: insights from analogue modeling. Tectonophysics, 753: 79—92. doi: 10.1016/j.tecto.2019.01.005
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  50
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回