• ISSN 1673-5722
  • CN 11-5429/P

最小二乘地震波4D球面扩散与吸收补偿方法及其应用研究

周青春 黎益仕 高战武 罗浩 王继

刘军, 谭明, 宋立军, 郝婧, 常想德, 姚远, 吴国栋. 2017年5月11日新疆塔什库尔干MS 5.5地震震害特征分析[J]. 震灾防御技术, 2019, 14(1): 231-238. doi: 10.11899/zzfy20190122
引用本文: 周青春,黎益仕,高战武,罗浩,王继,2022. 最小二乘地震波4D球面扩散与吸收补偿方法及其应用研究. 震灾防御技术,17(3):539−548. doi:10.11899/zzfy20220313. doi: 10.11899/zzfy20220313
Liu Jun, Tan Ming, Song Lijun, Hao Jing, Chang Xiangde, Yao Yuan, Wu Guodong. Analysis on the Disaster Characteristics of the 2017 Taxkorgan MS 5.5 Earthquake in Xinjiang[J]. Technology for Earthquake Disaster Prevention, 2019, 14(1): 231-238. doi: 10.11899/zzfy20190122
Citation: Zhou Qingchun, Li Yishi, Gao Zhanwu, Luo Hao, Wang Ji. 4D Spherical Divergence and Absorption Compensation Based on Least-squares for Seismic Wave[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 539-548. doi: 10.11899/zzfy20220313

最小二乘地震波4D球面扩散与吸收补偿方法及其应用研究

doi: 10.11899/zzfy20220313
基金项目: 中国地震局地震科技星火计划项目(XH22014A);中国海域及邻区活动构造框架研究(2017YFC1500401-01)
详细信息
    作者简介:

    周青春,男,生于1980年。高级工程师。主要从事地震数据处理解释、地震波传播与成像、地震构造建模方法研究和软件研发。E-mail: zqc10201020@163.com

4D Spherical Divergence and Absorption Compensation Based on Least-squares for Seismic Wave

  • 摘要: 基于地震波传播过程中能量衰减的物理机制理论分析,通过梳理已有研究成果,采用正弦函数分频、最小二乘法高阶e指数曲线拟合等技术研发了可实现时间、频率、炮检距和炮域内地震波4D球面扩散与大地吸收衰减补偿方法,解决了常规振幅补偿无法补偿振幅随频率衰减和剩余补偿的问题。实际地震资料处理结果表明,相较于常规振幅补偿方法,该方法可更准确地对球面扩散和大地吸收造成的地震波衰减进行自适应拟合与补偿,较好的恢复中、高频信号成分,提高主频,拓宽频带,有效提高成像分辨率,并较好地保持了振幅的相对关系。
  • 2017年5月11日,新疆维吾尔自治区喀什地区塔什库尔干县发生MS 5.5地震,地震造成8人死亡、31人受伤,造成房屋及设施破坏,直接经济损失共20.05亿元(侯建盛等,2017)。

    此次地震灾区主要涉及喀什地区塔什库尔干县科克亚尔柯尔克孜民族乡、塔合曼乡、提孜那普乡、塔什库尔干乡、班迪尔乡、巴扎达什牧林场(行政隶属班迪尔乡)、瓦恰乡、达布达尔乡等9个乡镇。灾区面积3288km2,受灾人口26486人,9285户,由于房屋毁坏和较大程度破坏造成失去住所人数共计16194人,4753户。

    此次地震震中位于新疆喀什地区塔什库尔干县塔什库尔干乡,宏观震中位于塔什库尔干乡库孜滚村,为Ⅷ度异常点。通过对灾区9个乡(镇、场)的69个调查点展开实地调查,得到的烈度图等震线长轴呈北北西走向分布(图 1)。Ⅶ度区面积227km2,长轴28km,短轴8km,涉及塔什库尔干镇(含县城)和塔什库尔干乡;Ⅵ度区面积3061km2,长轴100km,短轴43km,涉及科克亚尔柯尔克孜民族乡、塔合曼乡、提孜那普乡、塔什库尔干乡、班迪尔乡、巴扎达什牧林场(行政隶属班迪尔乡)、瓦恰乡、达布达尔乡等8个乡(场);Ⅵ度区及以上总面积为3288km2

    图 1  塔什库尔干地震烈度1
    Figure 1.  The seismic intensity map of the Taxkorgan earthquake

    1 新疆地震局,2017.新疆塔什库尔干5.5级地震灾害损失评估报告.

    震区位于帕米尔高原塔什库尔干断陷谷地,该谷地是由青藏高原西北帕米尔构造结内部塔什库尔干拉张系晚新生代以来的拉张作用形成的盆地,其南北狭长,东西分布海拔为4000—5000m的高山。

    震区内塔什库尔干断裂成型于华力西时期,有长期的演化发育史。大部分在喜马拉雅期重新复活,该断裂控制着塔什库尔干盆地的形成与演化,此次塔什库尔干MS 5.5地震就发生在塔什库尔干断裂带上(图 2)。

    图 2  塔什库尔干地震构造1
    Figure 2.  Seismotectonic map around the Taxkorgan earthquake area

    1 新疆地震局,2017.新疆塔什库尔干5.5级地震灾害损失评估报告.

    从本次地震的新构造运动分区背景来看,新近纪以来震区所处的西昆仑隆起区隆起幅度大致在2—7km,该隆起区第四纪以来的隆起幅度和速率分别为1200—1700m和10—13mm/a。

    震区位于帕米尔东北—西昆仑区段,西昆仑山体呈北西—南东走向,平均海拔5000—6000m,主要山峰偏于西部。主峰公格尔山海拔7649m,慕士塔格山为7509m,山体宽厚高大,南北不对称,北坡长而陡峭,与海拔1000m多的塔里木盆地相邻,高差4000m。帕米尔高原实际上并非平坦的高原面,由几组山脉和山脉之间宽阔的谷地和盆地构成。

    此次震中位于塔什库尔干谷地内,发育有塔什库尔干河,震区附近谷地与两侧高差700—1200m,谷地总体走向近南北,宽数千米,呈狭长状,谷地两岸冰碛物堆积及冲洪积堆积发育,村庄沿河流阶地及山前冲洪积扇分布(刘军等,2014),该地貌单元内场地类别为Ⅰ类,如图 3所示。

    图 3  震区场地条件分布
    Figure 3.  Distribution map of site conditions in the earthquake area

    本次地震涉及影响范围内的房屋结构类型主要包括简易房(土石木结构)、砖混结构、砖木结构及少量的框架结构。简易房按照承重墙体可分成两类,其中一类主要分布在山前洪积扇倾斜平原地带,多为当地居民就地取材而建,屋顶结构为先搭建房梁后在其上搁置短木条作为椽子,在椽子上铺设草席后覆盖房泥,部分老旧房屋屋顶房泥较厚,墙体由卵石、粉土砌筑而成,粘结强度极差,加之施工质量和场地条件的影响,造成一定数量的毁坏和大面积破坏,是导致本次地震造成人员伤亡的主要原因;另一类主要分布在塔什库尔干河两岸阶地上,此类房屋多为土坯砌筑而成。由于该地区经济落后,交通极为不便,建造成本高,在县城存在大量2000年左右建设的土石木房屋。在地震中,第一类房屋大面积倒塌,房屋倒塌基本为整体性倾覆,第二类土坯房倒塌相对略少,多为局部倒塌,2种不具抗震性能的房屋破坏面积较严重,计算时均列入土石木结构房屋,该类房屋在乡镇Ⅶ度区毁坏达39.1%,在县城的Ⅶ度区毁坏达24.3%。震区各类结构房屋面积如表 1所示。

    表 1  震区各类结构房屋面积(单位:m2
    Table 1.  Total areas of various kinds of structures in the earthquake area (unit: m2)
    行政区 土木结构面积 砖木结构面积 砖混结构面积 框架结构面积 总面积
    县城 9000 114700 171135 325700 620535
    乡镇 814770 46954 47636 0 909360
    下载: 导出CSV 
    | 显示表格

    乡镇中的砖木结构房屋为近年新建居住用房,设有构造措施,抗震能力好;老旧砖木房屋未经抗震设防,砌筑工艺和质量较差。震区老旧砖木房屋严重破坏现象为房屋承重墙体大面积剪切裂缝或外闪,局部屋顶塌落;中等破坏现象主要为墙体斜向或竖向开裂,宽度约1mm,但延伸长度较长,由墙体顶部延伸至底部。Ⅶ度区严重破坏以上达24.3%,但无整体倒塌房屋,该类结构房屋未造成人员伤亡。

    砖混结构房屋主要是乡(镇)公用房屋,或县城的居住用房。2010年后建设的砖混结构房屋抗震能力较好,地震后出现一定数量墙体细微开裂。2000年前建设砖混结构办公楼设防烈度低,在地震中造成一定数量严重破坏。震区典型房屋灾害如图 4所示。

    图 4  震区典型房屋震害
    Figure 4.  Typical damages caused by the earthquake

    框架结构多为2010年后新建办公用房,抗震能力好,未产生结构性破坏,但出现大面积填充墙开裂,修复量大。

    通过对震区69个调查点进行均匀抽样调查(孙景江等,2011),最后得到本次地震震区房屋破坏比,如表 2所示。

    表 2  震区各类结构房屋的破坏情况
    Table 2.  Statistial results of building damages of various structures in the earthquake area
    行政区 单位 毁坏 严重破坏 中等破坏 轻微破坏 破坏合计 不具备修复价值
    县城 m2 26156 54751 74645 341811 497363 99568
    1308 2738 3732 17091 24869 4979
    327 685 933 4273 6218 1245
    乡镇 m2 80958 151041 194444 260836 687279 280610
    4048 7552 9722 13042 34364 14031
    1012 1888 2431 3261 8592 3508
    下载: 导出CSV 
    | 显示表格

    在市政设施方面,地震造成42km供排水管道、34km供暖管道和4座供热站受损,造成供水厂、污水厂氧化池及构筑物受损;交通系统方面,共86km道路损毁,350m隧道严重损坏,9座桥涵、135处涵洞和20km道路防护损坏。塔什库尔干县村庄道路局部塌陷情况如图 5所示。

    图 5  塔什库尔干县村庄道路局部塌陷
    Figure 5.  Village road damage in Taxkorgan county

    在水利系统方面,地震造成114km水渠受损,对震区农作物灌溉造成一定影响。在达布达尔乡,草场水渠破坏造成库什吾尼可尔村、恰特尔塔什村、土拉村及库什吾尼可尔村等30余户、约0.12km2棉作地灌溉受影响,对震区居民的收入造成一定影响,恢复时间需要1个月左右。塔什库尔干县达布达尔乡阿特加依里村草场水渠地基失稳,在地震作用下完全破坏(图 6)。

    图 6  布达尔乡阿特加依里村草场水渠地基破坏情况
    Figure 6.  Damage of water channel at Atejiayili village of Dabudaer town

    在电力系统方面,地震造成63座(110kV、220kV)塔基局部受损,1座110kV变电所和11座35kV变电所受损。电力系统破坏造成塔什库尔干乡布依阿勒村、加隆且特村和吐尔得库勒村等近60户居民用电中断,经过5天的抢修,断电区域已经恢复供电。

    在通讯系统方面,地震造成移动、联通、电信公司7个核心机房受损(图 7),3座铁塔损坏,5km光缆倒伏。通讯系统破坏造成塔什库尔县城辖区内部分居民通信不稳定、少数居民固定电话不能呼入进户,经过2天的紧急抢修,通讯基本恢复正常。

    图 7  塔什库尔干县通信系统中心机房横向裂缝
    Figure 7.  Transverse cracks in communication room of Taxkorgan county

    在近年来新疆发生的历次破坏性地震中,震区建设的安居富民工程和抗震安居房(张勇,2005)在减少人员伤亡和经济损失中发挥了显著作用(谭明等,2014)。在此次地震中,塔什库尔干县绝大部分倒塌的房屋为老旧的简易房,造成人员伤亡的房屋均为土石木房屋,宏观震中附近的安居富民房屋均完好。新疆大规模实施安居富民工程后,建造的农居符合设计规范要求,无一受到毁坏或者严重破坏,抗震性能得到检验(唐丽华等,2016)。

    震后通过对灾区进行抽样调查,统计了安居房及安居工程改造的土木、砖木及砖混结构房屋所占比例,并根据灾区安居房未改造前的土木、砖木及砖混结构房屋数据,结合新疆地区安居富民房震害矩阵,对塔什库尔干5.5级地震的减灾效益进行了计算和分析。在地震灾害损失评估中,将抗震安居房和安居富民房面积替换为改造前的简易房屋面积,计算抗震房减灾效益(刘军等,2016),具体数据见表 3

    表 3  塔什库尔干县震区安居富民房减灾效益对比
    Table 3.  Statistical results of reducing damage with anti-seismic living room project
    类别 未进行安居工程改造损失 实际损失 减少损失
    受伤人数 68 31 37
    死亡人数 34 8 26
    受灾人数 53438 26486 26952
    房屋直接经济损失/亿元 68.8 20.05 38.75
    需紧急安置人数 36783 16194 20589
    恢复重建费用/亿元 88.3 29.34 42.96
    下载: 导出CSV 
    | 显示表格

    (1)此次地震属于浅源中强地震,震源深度8km,地面振动强。极震区位于地震断裂上方,灾害破坏较集中,对震中附近的库孜滚村造成了毁灭性破坏,与同级别地震相比较灾情较重。

    (2)塔什库尔干盆地是1个冰碛堆积盆地,其地下沉积物质具有强烈的不均一性,这种分选性极差的场地地基条件对地震动有一定放大效应,因此造成县城城区内的砖混结构房屋出现了不同程度的破坏,多数框架结构房屋填充墙大面积开裂。

    (3)灾区位于帕米尔高原,自然条件恶劣,资源匮乏,经济落后,建设成本高,自建房屋质量差,抗震能力低,也是本次地震震级不大、震害较重的重要原因。

  • 图  1  正弦分频滤波函数示意

    Figure  1.  Scheme of cosine frequency division filter function

    图  2  某实际数据处理效果对比

    Figure  2.  Comparison of actual data processing effect

    图  3  实际处理数据的频率-振幅谱

    Figure  3.  Frequency-amplitude spectrums of actual data processed

    图  4  实际处理数据的振幅变化曲线

    Figure  4.  Amplitude curves of actual data processed

    图  5  振幅补偿前、后的叠加剖面

    Figure  5.  Stack sections before/after amplitude compensation

    图  6  振幅补偿前、后叠加剖面的频率-振幅谱

    Figure  6.  Frequency-amplitude spectrums of stack sections before/after amplitude compensation

  • 高军, 凌云, 周兴元等, 1996. 时频域球面发散和吸收补偿. 石油地球物理勘探, 31(6): 856—866, 905

    Gao J. , Ling Y. , Zhou X. Y. , et al. , 1996. Compensation for spherical divergence and absorption in time-frequency domain. Oil Geophysical Prospecting, 31(6): 856—866, 905. (in Chinese)
    李鲲鹏, 李衍达, 张学工, 2000. 基于小波包分解的地层吸收补偿. 地球物理学报, 43(4): 542—549 doi: 10.3321/j.issn:0001-5733.2000.04.015

    Li K. P. , Li Y. D. , Zhang X. G. , 2000. A method to compensate earth filtering based on wavelet packet. Chinese Journal of Geophysics, 43(4): 542—549. (in Chinese) doi: 10.3321/j.issn:0001-5733.2000.04.015
    李胜强, 刘振东, 严加永等, 2020. 高分辨深反射地震探测采集处理关键技术综述. 地球物理学进展, 35(4): 1400—1409 doi: 10.6038/pg2020DD0098

    Li S. Q. , Liu Z. D. , Yan J. Y. , et al. , 2020. Review on the key techniques for high resolution deep reflection seismic acquisition and processing. Progress in Geophysics, 35(4): 1400—1409. (in Chinese) doi: 10.6038/pg2020DD0098
    凌云, 高军, 吴琳, 2005. 时频空间域球面发散与吸收补偿. 石油地球物理勘探, 40(2): 176—182, 189 doi: 10.3321/j.issn:1000-7210.2005.02.018

    Ling Y. , Gao J. , Wu L. , 2005. Compensation for spherical dispersion and absorption in time-frequency-space domain. Oil Geophysical Prospecting, 40(2): 176—182, 189. (in Chinese) doi: 10.3321/j.issn:1000-7210.2005.02.018
    刘财, 刘洋, 王典等, 2005. 一种频域吸收衰减补偿方法. 石油物探, 44(2): 116—118 doi: 10.3969/j.issn.1000-1441.2005.02.005

    Liu C. , Liu Y. , Wang D. , et al. , 2005. A method to compensate strata absorption and attenuation in frequency domain. Geophysical Prospecting for Petroleum, 44(2): 116—118. (in Chinese) doi: 10.3969/j.issn.1000-1441.2005.02.005
    刘喜武, 年静波, 刘洪, 2006. 基于广义S变换的地震波能量衰减分析. 勘探地球物理进展, 29(1): 20—24

    Liu X. W. , Nian J. B. , Liu H. , 2006. Generalized S-transform based seismic attenuation analysis. Progress in Exploration Geophysics, 29(1): 20—24. (in Chinese)
    吕牛顿, 1986. 连续介质中任意炮检距的球面扩散补偿因子. 石油物探, 25(2): 7—12

    Lü N. D. , 1986. Compensation factor of spherical diffusion with arbitrary offsets in continuous medium. Geophysical Prospecting for Petroleum, 25(2): 7—12. (in Chinese)
    苏世龙, 贺振华, 刘玉莲等, 2015. 城区勘探中激发药量对地震数据品质的影响及处理对策——以中国东部某油田CY城区为例. 物探与化探, 39(6): 1160—1166

    Su S. L. , He Z. H. , Liu Y. L. , et al. , 2015. The impact of explosive excitation weight on the quality of seismic data analysis in city exploration and countermeasures: a case study of CY City in an oilfield of eastern China. Geophysical and Geochemical Exploration, 39(6): 1160—1166.
    孙佳林, 王德利, 孟大江, 2012. 基于Curvelet变换的地层吸收补偿. 见: 中国地球物理2012. 北京: 中国科学技术大学出版社.

    Sun J. L., Wang D. L., Meng D. J., 2012. Absorption compensation based on curvelet transform. In: The Chinese Geophysics 2012. Beijing: University of Science and Technology of China Press. (in Chinese)
    田媛媛, 汪铁望, 戴海涛等, 2020. 改进的地震波几何扩散补偿方法在表层黄土塬介质条件下的应用. 见: 2020油气田勘探与开发国际会议论文集. 成都: 西安石油大学.

    Tian Y. Y., Wang T. W., Dai H. T., et al., 2020. Application of improved seismic-wave geometric diffusion compensation method in the surface loess tableland media. In: Proceedings of International Field Exploration and Development Conference. Chengdu: Xi’an Shiyou University. (in Chinese)
    王小杰, 颜中辉, 刘欣欣等, 2019. 基于小波分频的Q值补偿技术在东海中深层油气勘探中的应用. 海洋地质与第四纪地质, 39(6): 200—206

    Wang X. J. , Yan Z. H. , Liu X. X. , et al. , 2019. The application of formation Q value compensation method based on wavelet frequency division to the exploration of middle-deep hydrocarbon in the East China Sea. Marine Geology & Quaternary Geology, 39(6): 200—206. (in Chinese)
    王云专, 王晓华, 1998. 分频球面扩散和频率吸收补偿. 石油物探, 37(S1): 12—16

    Wang Y. Z. , Wang X. H. , 1998. Spherical divergence and frequency absorption compensation by frequency division. Geophysical Prospecting for Petroleum, 37(S1): 12—16. (in Chinese)
    杨存, 庄锡进, 叶月明, 2013. 时频域球面扩散补偿技术研究. 见: 中国石油学会2013年物探技术研讨会论文集. 保定: 中国石油学会.
    羊屋三维处理、解释一体化方法研究组, 2002. VTI介质的AVO理论与应用研究. 石油地球物理勘探, 37(4): 363—371 doi: 10.3321/j.issn:1000-7210.2002.04.011

    Research Group of Method for Yangwu 3-D Integrating Processing into Interpretation, 2002. Study of AVO theory and its application in VTI medium. Oil Geophysical Prospecting, 37(4): 363—371. (in Chinese) doi: 10.3321/j.issn:1000-7210.2002.04.011
    杨学亭, 刘财, 刘洋等, 2014. 基于连续小波变换的时频域地震波能量衰减补偿. 石油物探, 53(5): 523—529, 602 doi: 10.3969/j.issn.1000-1441.2014.05.004

    Yang X. T. , Liu C. , Liu Y. , et al. , 2014. The attenuation compensation of seismic wave energy in time-frequency domain based on the continuous wavelet transform. Geophysical Prospecting for Petroleum, 53(5): 523—529, 602. (in Chinese) doi: 10.3969/j.issn.1000-1441.2014.05.004
    张固澜, 熊晓军, 容娇君等, 2010. 基于改进的广义S变换的地层吸收衰减补偿. 石油地球物理勘探, 45(4): 512—515 doi: 10.13810/j.cnki.issn.1000-7210.2010.04.005

    Zhang G. L. , Xiong X. J. , Rong J. J. , et al. , 2010. Stratum absorption and attenuation compensation based on improved generalized S-transform. Oil Geophysical Prospecting, 45(4): 512—515. (in Chinese) doi: 10.13810/j.cnki.issn.1000-7210.2010.04.005
    张龙, 陈春明, 尼加提·阿布都逊等, 2015. 水陆交互区三维地震资料优化技术研究. 煤炭技术, 34(12): 100—101

    Zhang L. , Chen C. M. , Nijat A. , et al. , 2015. Research on 3-D seismic data optimization technology for water-land transitional regions. Coal Technology, 34(12): 100—101. (in Chinese)
    赵建勋, 倪克森, 1992. 串联反Q滤波及其应用. 石油地球物理勘探, 27(6): 722—730

    Zhao J. X. , Ni K. S. , 1992. Cascaded inverse Q filtering and the application. Oil Geophysical Prospecting, 27(6): 722—730. (in Chinese)
    赵圣亮, 王晓明, 王建华, 1994. 一种简易的频率补偿方法. 石油地球物理勘探, 29(2): 231—235 doi: 10.13810/j.cnki.issn.1000-7210.1994.02.017

    Zhao S. L. , Wang X. M. , Wang J. H. , 1994. A simple frequency compensation method. Oil Geophysical Prospecting, 29(2): 231—235. (in Chinese) doi: 10.13810/j.cnki.issn.1000-7210.1994.02.017
    Ferber R., 2005. A filter bank solution to absorption simulation and compensation. In: Proceedings of the 67 th EAGE Conference & Exhibition. Houston: SEG.
    Ferber R. , 2005. A filter bank solution to absorption simulation and compensation. SEG Technical Program Expanded Abstracts, 2005: 2170—2172.
    Hale D. , 1982. Q-adaptive deconvolution. In: Proceedings of 1982 SEG Annual Meeting. Dallas: SEG, 133—158.
    Hargreaves N. D. , Calvert A. J. , 1987. A fast inverse Q-filter. In: 1987 SEG Annual Meeting. New Orleans: SEG, 252—254.
    Newman P. , 1973. Divergence effects in a layered earth. Geophysics, 38(3): 481—488. doi: 10.1190/1.1440353
    Varela C. L. , Rosa A. L. R. , Ulrych T. J. , 1993. Modeling of attenuation and dispersion. Geophysics, 58(8): 1167—1173. doi: 10.1190/1.1443500
    Wang Y. H. , 2002. A stable and efficient approach of inverse Q filtering. Geophysics, 67(2): 657—663. doi: 10.1190/1.1468627
    Wang Y. H. , 2006. Inverse Q-filter for seismic resolution enhancement. Geophysics, 71(3): V51—V60. doi: 10.1190/1.2192912
  • 期刊类型引用(0)

    其他类型引用(2)

  • 加载中
图(6)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  82
  • PDF下载量:  9
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-02-10
  • 刊出日期:  2022-09-30

目录

/

返回文章
返回