Analysis of Seismic Statistical Characteristics Based on POT Model in Kunlun Mountain Area
-
摘要: 极值统计是研究较少发生但一旦发生即产生极大影响的随机事件的有效方法。本文以地震活动频繁的昆仑山地区作为研究区域,建立了基于广义帕累托分布的超阈值(POT)模型,并讨论了该地区若干地震活动性参数,包括强震震级分布、潜在震级上限、强震平均复发间隔、一定周期内的强震发震概率、一定时期内的重现水平和超定值重现震级。经统计分析得到:该地区震级阈值选定为MS5.5,超阈值期望震级为MS6.81,潜在震级上限高达MS9.08,MS8.0的平均复发间隔仅为66.8年,未来3年该地区发生MS5.5~MS6.5的概率在80%以上,百年重现水平即可达到历史最大震级MS8.1。
-
关键词:
- 广义帕累托分布 /
-
超阈值(
POT)模型 / - 潜在震级上限 /
- 重现水平
Abstract: Extreme value statistics is an effective method to study random events that rarely occur but can cause great impact once they occur. This article takes the Kunlun Mountains area with frequent seismic activities as the research area. We establish a peaks over threshold (POT) model based on the generalized Pareto distribution. Then we discuss several seismic activity parameters, including: strong earthquakes magnitude distribution, upper limit of potential magnitude, average recurrence period, probability of strong earthquakes in a certain period in the future, the recurrence level and expected recurrence magnitude in a certain period. According to statistical analysis, the magnitude threshold of the region is selected as MS5.5. The expected magnitude over the threshold is MS6.81 and the upper limit of potential magnitude is MS9.08. The average recurrence period of MS8.0 is only 66.8 years. The probabilities of MS5.5 ~ MS6.5 are all above 80%. The 100-year return period can reach the historical maximum magnitude MS8.1. -
表 1 超阈值震级基本信息
Table 1. Basic information of over threshold magnitudes
最小值 四分之一分位数 中位数 平均值 四分之三分位数 最大值 极差 标准差 5.59 5.80 6.00 6.20 6.43 8.10 2.51 0.58 表 2 G-R关系计算结果
Table 2. Calculation results of G-R relationship
起始时间/年 $ {M_{\min }} $ a b ${M_{{\rm{theo}}} }$ 1923 2.5 12.956 5 1.536 9 8.43 表 3 不同震级复发间隔及发震概率
Table 3. Recurrence cycle and occurrence probability of different magnitudes
震级MS/级 5.5 6.0 6.5 7.0 7.5 8.0 8.5 平均复发间隔/年 0.5 0.9 1.8 4.4 13.8 66.8 882.9 1年内发震概率 0.886 4 0.687 5 0.427 1 0.203 6 0.070 1 0.014 9 0.001 1 3年内发震概率 0.998 5 0.969 5 0.812 0 0.494 9 0.196 0 0.043 9 0.003 4 5年内发震概率 1.000 0 0.997 0 0.938 3 0.679 7 0.304 8 0.072 2 0.005 6 10年内发震概率 1.000 0 1.000 0 0.996 2 0.897 4 0.516 7 0.139 1 0.011 3 表 4 重现水平
Table 4. Recurrence level
项目 周期/年 1 2 5 10 20 50 100 重现水平(MS) 6.11 6.57 7.06 7.37 7.64 7.92 8.10 95%置信区间 (5.89,6.33) (6.29,6.85) (6.77,7.35) (7.03,7.71) (7.23,8.05) (7.37,8.47) (7.43,8.77) 超定值期望震级(MS) 6.69 7.05 7.46 7.71 7.92 8.15 8.30 -
陈凌, 刘杰, 陈颙等, 1998. 地震活动性分析中余震的删除. 地球物理学报, 41(S1): 244—252Chen L. , Liu J. , Chen Y. , et al. , 1998. Aftershock deletion in seismicity analysis. Acta Geophysica Sinica, 41(S1): 244—252. (in Chinese) 陈培善, 林邦慧, 1973. 极值理论在中长期地震预报中的应用. 地球物理学报, 16(1): 6—24Chen P. S. , Lin B. H. , 1973. An application of statistical theory of extreme values to moderate and long interval earthquake prediction. Acta Geophysica Sinica, 16(1): 6—24. (in Chinese) 胡聿贤, 1999. 地震安全性评价技术教程. 北京: 地震出版社. 黄玮琼, 李文香, 曹学锋, 1994. 中国大陆地震资料完整性研究之二——分区地震资料基本完整的起始年分布图象. 地震学报, 16(4): 423—432. 李昌珑, 2016. 时间相依的地震危险性区划研究及应用. 北京: 中国地震局地球物理研究所.Li C. L., 2016. Study and application of time-dependent seismic hazard zonation. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese) 钱小仕, 王福昌, 曹桂荣等, 2012. 广义极值分布在地震危险性分析中的应用. 地震研究, 35(1): 73—78 doi: 10.3969/j.issn.1000-0666.2012.01.013Qian X. S. , Wang F. C. , Cao G. R. , et al. , 2012. Application of the generalized extreme value distribution in seismic hazard analysis. Journal of Seismological Research, 35(1): 73—78. (in Chinese) doi: 10.3969/j.issn.1000-0666.2012.01.013 钱小仕, 王福昌, 盛书中, 2013. 基于广义帕累托分布的地震震级分布尾部特征分析. 地震学报, 35(3): 341—350 doi: 10.3969/j.issn.0253-3782.2013.03.006Qian X. S. , Wang F. C. , Sheng S. Z. , 2013. Characterization of tail distribution of earthquake magnitudes via generalized Pareto distribution. Acta Seismologica Sinica, 35(3): 341—350. (in Chinese) doi: 10.3969/j.issn.0253-3782.2013.03.006 任梦依, 2018. 龙门山地区的地震活动性广义帕累托模型构建. 地震研究, 41(2): 226—232 doi: 10.3969/j.issn.1000-0666.2018.02.010Ren M. Y. , 2018. The establishment of generalized Pareto distribution model of seismicity in Longmenshan region. Journal of Seismological Research, 41(2): 226—232. (in Chinese) doi: 10.3969/j.issn.1000-0666.2018.02.010 任晴晴, 钱小仕, 赵玲玲等, 2013. 中国大陆活动地块边界带最大震级分布特征研究. 地震, 33(3): 67—76 doi: 10.3969/j.issn.1000-3274.2013.03.008Ren Q. Q. , Qian X. S. , Zhao L. L. , et al. , 2013. Characteristics of maximum magnitude distributions for active block boundaries in China’s mainland. Earthquake, 33(3): 67—76. (in Chinese) doi: 10.3969/j.issn.1000-3274.2013.03.008 任晴晴, 陆丽娜, 钱小仕等, 2021. 巴颜喀拉地块及其周边地震危险性分析. 地震, 41(3): 144—156 doi: 10.12196/j.issn.1000-3274.2021.03.011Ren Q. Q. , Lu L. N. , Qian X. S. , et al. , 2021. Earthquake hazard analysis of the Bayankala block and its surroundings. Earthquake, 41(3): 144—156. (in Chinese) doi: 10.12196/j.issn.1000-3274.2021.03.011 史道济, 2006. 实用极值统计方法. 天津: 天津科学技术出版社. 苏有锦, 李忠华, 2011. 云南地区6级以上强震时间分布特征及其概率预测模型研究. 地震研究, 34(1): 1—7. doi: 10.3969/j.issn.1000-0666.2011.01.001Sun Y. J. , Li Z. H. , 2011. Interval Distribution and Probability Model of the Strong Earthquakes with M≥6.0 in Yunnan. Journal of Seismological Research, 34(1): 1—7. (in Chinese) doi: 10.3969/j.issn.1000-0666.2011.01.001 田建伟, 刘哲, 任鲁川, 2017. 基于广义帕累托分布的马尼拉海沟俯冲带地震危险性估计. 地震, 37(1): 158—165 doi: 10.3969/j.issn.1000-3274.2017.01.016Tian J. W. , Liu Z. , Ren L. C. , 2017. Seismic hazard estimation of the Manila trench subduction zone based on generalized Pareto distribution. Earthquake, 37(1): 158—165. (in Chinese) doi: 10.3969/j.issn.1000-3274.2017.01.016 徐昊, 孙玉军, 吴中海, 2018. 岩石圈结构对大地震震后形变的影响——以1976年唐山大地震和2001年昆仑山大地震为例. 地球物理学报, 61(8): 3170—3184 doi: 10.6038/cjg2018L0637Xu H. , Sun Y. J. , Wu Z. H. , 2018. The effect of lithospheric structure on the seismic deformation—taking the 1976 Tangshan earthquake and 2001 Kunlunshan earthquake as an example. Chinese Journal of Geophysics, 61(8): 3170—3184. (in Chinese) doi: 10.6038/cjg2018L0637 徐伟进, 高孟潭. 2012. 根据截断的G-R模型计算东北地震区震级上限. 地球物理学报, 55(5): 1710—1717Xu W. J., Gao M. T., 2012. Calculation of upper limit earthquake magnitude for Northeast seismic region of China based on truncated G-R model. Chinese Journal of Geophysics, 55(5): 1710—1717. (in Chinese) 张国民, 马宏生, 王辉等, 2005. 中国大陆活动地块边界带与强震活动. 地球物理学报, 48(3): 602—610 doi: 10.3321/j.issn:0001-5733.2005.03.018Zhang G. M. , Ma H. S. , Wang H. , et al. , 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland. Chinese Journal of Geophysics, 48(3): 602—610. (in Chinese) doi: 10.3321/j.issn:0001-5733.2005.03.018 Balkema A. A. , de Haan L. , 1974. Residual life time at great age. The Annals of Probability, 2(5): 792—804. Coles S., 2001. An introduction to statistical modeling of extreme values. London: Springer. Cornell C. A. , 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5): 1583—1606. doi: 10.1785/BSSA0580051583 Fisher R. A. , Tippett L. H. C. , 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24(2): 180—190. doi: 10.1017/S0305004100015681 Gutenberg B. , Richter C. F. , 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185—188. doi: 10.1785/BSSA0340040185 Gutenberg B. , Richter C. F. , 1956. Earthquake magnitude, intensity, energy, and acceleration: (second paper). Bulletin of the Seismological Society of America, 46(2): 105—145. doi: 10.1785/BSSA0460020105 Huyse L. , Chen R. , Stamatakos J. A. , 2010. Application of generalized Pareto distribution to constrain uncertainty in peak ground accelerations. Bulletin of the Seismological Society of America, 100(1): 87—101. doi: 10.1785/0120080265 Pickands J. , 1975. Statistical inference using extreme order statistics. The Annals of Statistics, 3(1): 119—131. Pisarenko V. F. , Sornette D. , 2003. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure and Applied Geophysics, 160(12): 2343—2364. doi: 10.1007/s00024-003-2397-x Sun J. C. , Pan T. C. , 1995. The probability of very large earthquakes in Sumatra. Bulletin of the Seismological Society of America, 85(4): 1226—1231. doi: 10.1785/BSSA0850041226