• ISSN 1673-5722
  • CN 11-5429/P

基于POT模型的昆仑山地区地震统计特征分析

任晴晴 赵宜宾 钱小仕 李科长 张艳芳

任晴晴,赵宜宾,钱小仕,李科长,张艳芳,2022. 基于POT模型的昆仑山地区地震统计特征分析. 震灾防御技术,17(3):529−538. doi:10.11899/zzfy20220312. doi: 10.11899/zzfy20220312
引用本文: 任晴晴,赵宜宾,钱小仕,李科长,张艳芳,2022. 基于POT模型的昆仑山地区地震统计特征分析. 震灾防御技术,17(3):529−538. doi:10.11899/zzfy20220312. doi: 10.11899/zzfy20220312
Ren Qingqing, Zhao Yibin, Qian Xiaoshi, Li Kechang, Zhang Yanfang. Analysis of Seismic Statistical Characteristics Based on POT Model in Kunlun Mountain Area[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 529-538. doi: 10.11899/zzfy20220312
Citation: Ren Qingqing, Zhao Yibin, Qian Xiaoshi, Li Kechang, Zhang Yanfang. Analysis of Seismic Statistical Characteristics Based on POT Model in Kunlun Mountain Area[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 529-538. doi: 10.11899/zzfy20220312

基于POT模型的昆仑山地区地震统计特征分析

doi: 10.11899/zzfy20220312
基金项目: 中央高校基本科研业务费项目(ZY20140203,ZY20210311);河北省地震科技星火计划项目重点项目(DZ20200827053);河北省高等学校科学技术研究项目(Z2020224)
详细信息
    作者简介:

    任晴晴,女,生于1987年。硕士,讲师。主要从事应用数学、统计学等方面研究。E-mail:renqingtian126@126.com

    通讯作者:

    赵宜宾,男,生于1976年。硕士,教授。主要从事模糊数学等方面研究。E-mail:zhaoyibin5362@126.com

Analysis of Seismic Statistical Characteristics Based on POT Model in Kunlun Mountain Area

  • 摘要: 极值统计是研究较少发生但一旦发生即产生极大影响的随机事件的有效方法。本文以地震活动频繁的昆仑山地区作为研究区域,建立了基于广义帕累托分布的超阈值(POT)模型,并讨论了该地区若干地震活动性参数,包括强震震级分布、潜在震级上限、强震平均复发间隔、一定周期内的强震发震概率、一定时期内的重现水平和超定值重现震级。经统计分析得到:该地区震级阈值选定为MS5.5,超阈值期望震级为MS6.81,潜在震级上限高达MS9.08,MS8.0的平均复发间隔仅为66.8年,未来3年该地区发生MS5.5~MS6.5的概率在80%以上,百年重现水平即可达到历史最大震级MS8.1。
  • 图  1  1900—2019年地震数据统计

    Figure  1.  Statistical graphs of seismic datas from 1900 to 2019

    图  2  震级平均剩余寿命

    Figure  2.  Mean remaining life of magnitude

    图  3  基于不同阈值的参数估计

    Figure  3.  Parameters estimations with respect to different thresholds

    图  4  昆仑山地区震级的阈值超出量模型诊断结果

    Figure  4.  Model fitting diagnosis chart of Kunlun mountains area

    图  5  昆仑山地区G-R关系

    Figure  5.  G-R graph of Kunlun mountain area

    图  6  本文模型与泊松(指数)分布比较

    Figure  6.  Comparison between the model in this paper and the poisson (exponential) distribution

    表  1  超阈值震级基本信息

    Table  1.   Basic information of over threshold magnitudes

    最小值四分之一分位数中位数平均值四分之三分位数最大值极差标准差
    5.595.806.006.206.438.102.510.58
    下载: 导出CSV

    表  2  G-R关系计算结果

    Table  2.   Calculation results of G-R relationship

    起始时间/年$ {M_{\min }} $ab${M_{{\rm{theo}}} }$
    19232.512.956 51.536 98.43
    下载: 导出CSV

    表  3  不同震级复发间隔及发震概率

    Table  3.   Recurrence cycle and occurrence probability of different magnitudes

    震级MS/级5.56.06.57.07.58.08.5
    平均复发间隔/年0.50.91.84.413.866.8882.9
    1年内发震概率0.886 40.687 50.427 10.203 60.070 10.014 90.001 1
    3年内发震概率0.998 50.969 50.812 00.494 90.196 00.043 90.003 4
    5年内发震概率1.000 00.997 00.938 30.679 70.304 80.072 20.005 6
    10年内发震概率1.000 01.000 00.996 20.897 40.516 70.139 10.011 3
    下载: 导出CSV

    表  4  重现水平

    Table  4.   Recurrence level

    项目周期/年
    125102050100
    重现水平(MS6.116.577.067.377.647.928.10
    95%置信区间(5.89,6.33)(6.29,6.85)(6.77,7.35)(7.03,7.71)(7.23,8.05)(7.37,8.47)(7.43,8.77)
    超定值期望震级(MS6.697.057.467.717.928.158.30
    下载: 导出CSV
  • 陈凌, 刘杰, 陈颙等, 1998. 地震活动性分析中余震的删除. 地球物理学报, 41(S1): 244—252

    Chen L. , Liu J. , Chen Y. , et al. , 1998. Aftershock deletion in seismicity analysis. Acta Geophysica Sinica, 41(S1): 244—252. (in Chinese)
    陈培善, 林邦慧, 1973. 极值理论在中长期地震预报中的应用. 地球物理学报, 16(1): 6—24

    Chen P. S. , Lin B. H. , 1973. An application of statistical theory of extreme values to moderate and long interval earthquake prediction. Acta Geophysica Sinica, 16(1): 6—24. (in Chinese)
    胡聿贤, 1999. 地震安全性评价技术教程. 北京: 地震出版社.
    黄玮琼, 李文香, 曹学锋, 1994. 中国大陆地震资料完整性研究之二——分区地震资料基本完整的起始年分布图象. 地震学报, 16(4): 423—432.
    李昌珑, 2016. 时间相依的地震危险性区划研究及应用. 北京: 中国地震局地球物理研究所.

    Li C. L., 2016. Study and application of time-dependent seismic hazard zonation. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    钱小仕, 王福昌, 曹桂荣等, 2012. 广义极值分布在地震危险性分析中的应用. 地震研究, 35(1): 73—78 doi: 10.3969/j.issn.1000-0666.2012.01.013

    Qian X. S. , Wang F. C. , Cao G. R. , et al. , 2012. Application of the generalized extreme value distribution in seismic hazard analysis. Journal of Seismological Research, 35(1): 73—78. (in Chinese) doi: 10.3969/j.issn.1000-0666.2012.01.013
    钱小仕, 王福昌, 盛书中, 2013. 基于广义帕累托分布的地震震级分布尾部特征分析. 地震学报, 35(3): 341—350 doi: 10.3969/j.issn.0253-3782.2013.03.006

    Qian X. S. , Wang F. C. , Sheng S. Z. , 2013. Characterization of tail distribution of earthquake magnitudes via generalized Pareto distribution. Acta Seismologica Sinica, 35(3): 341—350. (in Chinese) doi: 10.3969/j.issn.0253-3782.2013.03.006
    任梦依, 2018. 龙门山地区的地震活动性广义帕累托模型构建. 地震研究, 41(2): 226—232 doi: 10.3969/j.issn.1000-0666.2018.02.010

    Ren M. Y. , 2018. The establishment of generalized Pareto distribution model of seismicity in Longmenshan region. Journal of Seismological Research, 41(2): 226—232. (in Chinese) doi: 10.3969/j.issn.1000-0666.2018.02.010
    任晴晴, 钱小仕, 赵玲玲等, 2013. 中国大陆活动地块边界带最大震级分布特征研究. 地震, 33(3): 67—76 doi: 10.3969/j.issn.1000-3274.2013.03.008

    Ren Q. Q. , Qian X. S. , Zhao L. L. , et al. , 2013. Characteristics of maximum magnitude distributions for active block boundaries in China’s mainland. Earthquake, 33(3): 67—76. (in Chinese) doi: 10.3969/j.issn.1000-3274.2013.03.008
    任晴晴, 陆丽娜, 钱小仕等, 2021. 巴颜喀拉地块及其周边地震危险性分析. 地震, 41(3): 144—156 doi: 10.12196/j.issn.1000-3274.2021.03.011

    Ren Q. Q. , Lu L. N. , Qian X. S. , et al. , 2021. Earthquake hazard analysis of the Bayankala block and its surroundings. Earthquake, 41(3): 144—156. (in Chinese) doi: 10.12196/j.issn.1000-3274.2021.03.011
    史道济, 2006. 实用极值统计方法. 天津: 天津科学技术出版社.
    苏有锦, 李忠华, 2011. 云南地区6级以上强震时间分布特征及其概率预测模型研究. 地震研究, 34(1): 1—7. doi: 10.3969/j.issn.1000-0666.2011.01.001

    Sun Y. J. , Li Z. H. , 2011. Interval Distribution and Probability Model of the Strong Earthquakes with M≥6.0 in Yunnan. Journal of Seismological Research, 34(1): 1—7. (in Chinese) doi: 10.3969/j.issn.1000-0666.2011.01.001
    田建伟, 刘哲, 任鲁川, 2017. 基于广义帕累托分布的马尼拉海沟俯冲带地震危险性估计. 地震, 37(1): 158—165 doi: 10.3969/j.issn.1000-3274.2017.01.016

    Tian J. W. , Liu Z. , Ren L. C. , 2017. Seismic hazard estimation of the Manila trench subduction zone based on generalized Pareto distribution. Earthquake, 37(1): 158—165. (in Chinese) doi: 10.3969/j.issn.1000-3274.2017.01.016
    徐昊, 孙玉军, 吴中海, 2018. 岩石圈结构对大地震震后形变的影响——以1976年唐山大地震和2001年昆仑山大地震为例. 地球物理学报, 61(8): 3170—3184 doi: 10.6038/cjg2018L0637

    Xu H. , Sun Y. J. , Wu Z. H. , 2018. The effect of lithospheric structure on the seismic deformation—taking the 1976 Tangshan earthquake and 2001 Kunlunshan earthquake as an example. Chinese Journal of Geophysics, 61(8): 3170—3184. (in Chinese) doi: 10.6038/cjg2018L0637
    徐伟进, 高孟潭. 2012. 根据截断的G-R模型计算东北地震区震级上限. 地球物理学报, 55(5): 1710—1717

    Xu W. J., Gao M. T., 2012. Calculation of upper limit earthquake magnitude for Northeast seismic region of China based on truncated G-R model. Chinese Journal of Geophysics, 55(5): 1710—1717. (in Chinese)
    张国民, 马宏生, 王辉等, 2005. 中国大陆活动地块边界带与强震活动. 地球物理学报, 48(3): 602—610 doi: 10.3321/j.issn:0001-5733.2005.03.018

    Zhang G. M. , Ma H. S. , Wang H. , et al. , 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland. Chinese Journal of Geophysics, 48(3): 602—610. (in Chinese) doi: 10.3321/j.issn:0001-5733.2005.03.018
    Balkema A. A. , de Haan L. , 1974. Residual life time at great age. The Annals of Probability, 2(5): 792—804.
    Coles S., 2001. An introduction to statistical modeling of extreme values. London: Springer.
    Cornell C. A. , 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5): 1583—1606. doi: 10.1785/BSSA0580051583
    Fisher R. A. , Tippett L. H. C. , 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24(2): 180—190. doi: 10.1017/S0305004100015681
    Gutenberg B. , Richter C. F. , 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185—188. doi: 10.1785/BSSA0340040185
    Gutenberg B. , Richter C. F. , 1956. Earthquake magnitude, intensity, energy, and acceleration: (second paper). Bulletin of the Seismological Society of America, 46(2): 105—145. doi: 10.1785/BSSA0460020105
    Huyse L. , Chen R. , Stamatakos J. A. , 2010. Application of generalized Pareto distribution to constrain uncertainty in peak ground accelerations. Bulletin of the Seismological Society of America, 100(1): 87—101. doi: 10.1785/0120080265
    Pickands J. , 1975. Statistical inference using extreme order statistics. The Annals of Statistics, 3(1): 119—131.
    Pisarenko V. F. , Sornette D. , 2003. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure and Applied Geophysics, 160(12): 2343—2364. doi: 10.1007/s00024-003-2397-x
    Sun J. C. , Pan T. C. , 1995. The probability of very large earthquakes in Sumatra. Bulletin of the Seismological Society of America, 85(4): 1226—1231. doi: 10.1785/BSSA0850041226
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  34
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回