• ISSN 1673-5722
  • CN 11-5429/P

海域俯冲带高频地震动模拟−以2021年2月13日日本福岛MS7.1地震为例

李宗超 高孟潭 孙吉泽 司洁戈 吴清 李奇

李宗超,高孟潭,孙吉泽,司洁戈,吴清,李奇,2022. 海域俯冲带高频地震动模拟−以2021年2月13日日本福岛MS7.1地震为例. 震灾防御技术,17(3):516−528. doi:10.11899/zzfy20220311. doi: 10.11899/zzfy20220311
引用本文: 李宗超,高孟潭,孙吉泽,司洁戈,吴清,李奇,2022. 海域俯冲带高频地震动模拟−以2021年2月13日日本福岛MS7.1地震为例. 震灾防御技术,17(3):516−528. doi:10.11899/zzfy20220311. doi: 10.11899/zzfy20220311
Li Zongchao, Gao Mengtan, Sun Jize, Si Jiege, Wu Qing, Li Qi. Simulation of High-frequency Ground Motions in the Subduction Zone of the Sea Area−Taking the Fukushima MS7.1 Earthquake on February 13, 2021 as an Example[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 516-528. doi: 10.11899/zzfy20220311
Citation: Li Zongchao, Gao Mengtan, Sun Jize, Si Jiege, Wu Qing, Li Qi. Simulation of High-frequency Ground Motions in the Subduction Zone of the Sea Area−Taking the Fukushima MS7.1 Earthquake on February 13, 2021 as an Example[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 516-528. doi: 10.11899/zzfy20220311

海域俯冲带高频地震动模拟−以2021年2月13日日本福岛MS7.1地震为例

doi: 10.11899/zzfy20220311
基金项目: 国家重点研发计划(2019YFC1511004-02);科技部基础资源调查专项(2018FY100504);中国地震局地球物理研究所基本科研业务费专项(DQJB22B21,DQJB22R30)
详细信息
    作者简介:

    李宗超,男,生于1989年。博士,副研究员。主要从事强地震动预测及其不确定性因素研究。E-mail:lizongchaoigo@163.com

    通讯作者:

    孙吉泽,男,生于1982年。博士,高级工程师。主要从事强地面运动观测、数据分析及模拟、复杂场址地震动参数评价、城市及工程震害预测等研究。E-mail:sun_jize@126.com

Simulation of High-frequency Ground Motions in the Subduction Zone of the Sea Area−Taking the Fukushima MS7.1 Earthquake on February 13, 2021 as an Example

  • 摘要: 2021年2月13日,日本福岛近海发生MS7.1地震,震中距海岸线约70 km,震源深度接近60 km,造成了较大范围的震害影响。考虑地震应急及地震动强度特征预测的应用前景等,利用经验格林函数法快速估计了本次地震的高频地震动(1.0~20.0 Hz)空间分布特征及加速度时程,并结合实际地形、场地覆盖层等信息对部分台站地震动模拟结果进行修正,最终获得较可靠的地震动预测结果。研究结果表明,在具备合适小震记录时(余震及前震),可较准确地再现大震的高频地震动主要特征,模拟结果与真实记录拟合较好;地震动模拟过程中需考虑盆地等特殊地形及覆盖土层对地震动的放大作用影响,这也是未来利用经验格林函数法合成大震时需重点考虑的因素。
  • 图  1  研究区域基本信息

    Figure  1.  Basic information of study area

    图  2  最大峰值加速度出现的台站MYGH10各分量时程

    Figure  2.  Time history of each component of station MYGH10 with maximum peak ground acceleration

    图  3  经验格林函数法用到的有限断层震源模型

    注:rij为第(ij)个子断层到观测点的距离,r0为破裂初始点到观测点的距离;ξij为第(ij)个子断层到初始破裂位置的距离,WL分别为大震断层面的长度和宽度,wl分别为小震断层面的长度和宽度

    Figure  3.  Finite fault source model

    4  初步模拟结果较好的部分台站地震动加速度时程

    4.  Acceleration time history of some stations with good initial simulation results

    5  初步模拟结果欠佳的5个台站地震动加速度时程

    5.  Acceleration time history of 5 stations with poor initial simulation results

    图  6  初步模拟后观测值与模拟值的PGA空间分布特征对比

    Figure  6.  After the preliminary simulation, the spatial distribution characteristics of PGA between the observed valuesand the simulated values were compared

    图  7  修正后的5个台站地震动时程

    Figure  7.  the corrected ground motion time histories of 5 stations

    图  8  部分台站(1.0~20.0 Hz)观测值与模拟值的地震动傅氏谱对比

    Figure  8.  The fourier spectra of some stations (1.0~20 Hz) are compared with the simulated values

    图  9  修正后的PGA空间分布

    Figure  9.  The spatial distribution of PGA after correction

    表  1  震源参数

    Table  1.   Parameters of related source

    参数震级
    MS7.1MS4.8
    破裂面积/km26.29×1032.76×102
    地震矩/dyne·cm1.54×10267.26×1023
    震源深度/km50.750.0
    剪切波速/km·s−14.24.2
    破裂速度/km·s−13.33.3
    震源上升时间/s3.043.04
    下载: 导出CSV

    表  2  凹凸体参数

    Table  2.   Parameters of the asperity

    参数数值
    凹凸体面积/m21.38×109
    凹凸体地震矩/dyne·cm3.40×1025
    大、小地震应力降比值C5.45
    划分子断层数量N4.13
    子断层长度dx/km10.52
    子断层宽度dw/km5.26
    下载: 导出CSV

    表  3  MYGH10台站波速结构

    Table  3.   The velocity structure of station MYGH10

    土层编号厚度/m深度/mP波速度
    VP/m·s−1
    剪切波速VS/m·s−1
    111500110
    2231 750250
    331341 750390
    4801141 830590
    51 920770
    下载: 导出CSV

    表  4  台站加速度时程幅值修正系数

    Table  4.   Correction coefficient of acceleration time history amplitude of each station

    台站编号初始PGA(EW向)/
    cm·s−2
    初始PGA(NS向)/
    cm·s−2
    修正系数修正后PGA(EW向)/
    cm·s−2
    修正后PGA(NS向)/
    cm·s−2
    FKS00212.717.51.417.7824.5
    FKS0173.93.53.513.6512.3
    FKS01910.311.51.818.5420.7
    MYG0145.76.31.58.559.5
    MYGH1020.129.52.142.2161.9
    下载: 导出CSV
  • 付长华, 2012. 北京盆地结构对长周期地震动加速度反应谱的影响. 北京: 中国地震局地球物理研究所.

    Fu C. H., 2012. A study on long-period acceleration response spectrum of ground motion affected by basin structure of Beijing. Beijing: Institute of Geophysics, China EarthquakeAdministration. (in Chinese)
    高孟潭, 陈学良, 肖和平等, 2009. 湖南中强地震活动地区Ⅱ类场地放大效应研究. 中国地震, 252): 140—150 doi: 10.3969/j.issn.1001-4683.2009.02.004

    Gao M. T. , Chen X. L. , Xiao H. P. , et al. , 2009. Study on amplification effect of type Ⅱ sites in moderate earthquake area of Hunan. Earthquake Research in China, 25(2): 140—150. (in Chinese) doi: 10.3969/j.issn.1001-4683.2009.02.004
    胡进军, 郑鹏, 2017. 基于日本滨海强震数据的不同震源类型的衰减关系比较. 建筑结构, 47(S1): 669—677 doi: 10.19701/j.jzjg.2017.s1.149

    Hu J. J. , Zheng P. , 2017. Comparison of attenuation relationships of different seismic types based on strong earthquake data in coastal areas Japan. Building Structure, 47(S1): 669—677. (in Chinese) doi: 10.19701/j.jzjg.2017.s1.149
    李春果, 王宏伟, 温瑞智等, 2020. 地震动残差分析盆地附加放大效应: 日本关东盆地为例. 震灾防御技术, 15(4): 684—695 doi: 10.11899/zzfy20200403

    Li C. G. , Wang H. W. , Wen R. Z. , et al. , 2020. Basin extra amplification effects from seismic ground-motion residual analysis: a case study of Kanto Basin, Japan. Technology for Earthquake Disaster Prevention, 15(4): 684—695. (in Chinese) doi: 10.11899/zzfy20200403
    李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21—29

    Li X. J. , 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21—29. (in Chinese)
    李宗超, 陈学良, 高孟潭等, 2016. 经验格林函数方法模拟强地面运动的研究进展. 世界地震工程, 32(2): 209—216

    Li Z. C. , Chen X. L. , Gao M. T. , et al. , 2016. Research progress of empirical Green function method simulation strong ground motion. World Earthquake Engineering, 32(2): 209—216. (in Chinese)
    李宗超, 2017. 大震近场地震动数值模拟不确定性研究. 北京: 中国地震局地球物理研究所.

    Li Z. C., 2017. The uncertainty factors research of near-field ground motion numerical simulation. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    李宗超, 高孟潭, 陈学良等, 2019 a. 九寨沟MS7.0地震强地震动模拟及漳扎镇地震动强度预测. 地球物理学报, 62(7): 2567—2581

    Li Z. C. , Gao M. T. , Chen X. L. , et al. , 2019 a. Simulation of ground motion by the 2017 Jiuzhaigou MS7.0 earthquake and estimation of ground motion intensity in the Zhangzha Town. Chinese Journal of Geophysics, 62(7): 2567—2581. (in Chinese)
    李宗超, 高孟潭, 陈学良等, 2019 b. 2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析. 地震学报, 41(1): 100—110

    Li Z. C. , Gao M. T. , Chen X. L. , et al. , 2019 b. Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016. Acta Seismologica Sinica, 41(1): 100—110. (in Chinese)
    罗奇峰, 1989. 近场加速度的半经验合成. 哈尔滨: 中国地震局工程力学研究所.

    Luo Q. F., 1989. Semi empirical synthesis of near field acceleration. Harbin: Institute of engineering mechanics. Harbin: Institute of Engineering Mechanics, China Seismological Bureau. (in Chinese)
    吕红山, 赵凤新, 2007. 适用于中国场地分类的地震动反应谱放大系数. 地震学报, 29(1): 67—76 doi: 10.3321/j.issn:0253-3782.2007.01.008

    Lü H. S. , Zhao F. X. , 2007. Site coefficients suitable to China site category. Acta Seismologica Sinica, 29(1): 67—76. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.01.008
    王建龙, 陈学良, 高孟潭等, 2014. 地震动峰值放大与盆地深度关系的初步数值模拟. 地震工程与工程振动, 34(S1): 167—172 doi: 10.13197/j.eeev.2014.S0.167.wangjl.025

    Wang J. L. , Chen X. L. , Gao M. T. , et al. , 2014. Preliminary numerical simulation of the dependence of the peak ground motion amplification on the basin depth. Earthquake Engineering and Engineering Dynamics, 34(S1): 167—172. (in Chinese) doi: 10.13197/j.eeev.2014.S0.167.wangjl.025
    王亮, 2014. 基于KiK-net强震台网的土层地震动特性研究. 哈尔滨: 中国地震局工程力学研究所.

    Wang L., 2014. The research of soil layer seismic characteristic based on KiK-net strong-motion network. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    于彦彦, 2016. 三维沉积盆地地震效应研究. 哈尔滨: 中国地震局工程力学研究所.

    Yu Y. Y., 2016. Research on seismic effects of three-dimensional sedimentary basins. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    张龙飞, 2020. 基于Vs30PGA放大效应的大同盆地土地防震减灾适宜性规划. 地震工程与工程振动, 40(5): 216—223

    Zhang L. F. , 2020. Suitability planning of land earthquake prevention and mitigation in Datong basin based on Vs30 and PGA amplification effect. Earthquake Engineering and Engineering Dynamics, 40(5): 216—223. (in Chinese)
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    Boore D. M., 2003. Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160(3—4): 635—676.
    Brune J. N. , 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26): 4997—5009. doi: 10.1029/JB075i026p04997
    Geller R. J. , 1976. Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5): 1501—1523.
    Hartzell S. H. , 1978. Earthquake aftershocks as Green's functions. Geophysical Research Letters, 5(1): 1—4. doi: 10.1029/GL005i001p00001
    Irikura K., 1983. Semi-empirical estimation of strong ground motions during large earthquakes. Bulletin of Disaster Prevention Research Institute, Kyoto University, 33(298): 63—104.
    Irikura K. , 1986. Prediction of strong acceleration motion using empirical Green’s function. In: Proceedings of the 7 th Japan Earthquake Engineering Symposium. Japan, 151—156.
    Irikura K. , Kamae K. , 1994. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique. Annals of Geophysics, 37(6): 1721—1743.
    Irikura K., Miyake H., 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 168(1—2): 85—104.
    Irikura K., Miyakoshi K., Kamae K., et al., 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake. Earth, Planets and Space, 69(1): 10.
    Kamae K. , Irikura K. , Pitarka A. , 1998. A technique for simulating strong ground motion using hybrid Green's function. Bulletin of the Seismological Society of America, 88(2): 357—367. doi: 10.1785/BSSA0880020357
    Kanamori H. , Anderson D. L. , 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5): 1073—1095.
    Kanamori H. , 1979. A semi-empirical approach to prediction of long-period ground motions from great earthquakes. Bulletin of the Seismological Society of America, 69(6): 1645—1670. doi: 10.1785/BSSA0690061645
    Li Z. C. , Gao M. T. , Jiang H. , et al. , 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion. Acta Geophysica, 66(4): 523—540. doi: 10.1007/s11600-018-0171-9
    Li Z. C. , Sun J. Z. , Chen X. L. , et al. , 2021 a. Predicting the near-field strong ground motion based on uncertainties in asperities: an opportunity to reproduce the characteristics of the 1970 Tonghai earthquake (MS 7.8). Journal of Seismology, 25(3): 875—898. doi: 10.1007/s10950-021-09997-w
    Li Z. C. , Chen X. L. , Chen K. , et al. , 2021 b. Predicting near-field strong ground motion of the Huaxian MS8.5 earthquake based on uncertainty factors of asperities. Pure and Applied Geophysics, 178(3): 889—906. doi: 10.1007/s00024-021-02682-6
    Li Z. C. , Sun J. Z. , Fang L. H, et al. , 2022. Reproducing the Spatial Characteristics of High‐Frequency Ground Motions for the 1850 M 7.5 Xichang Earthquake. Seismological Research Letters, 93 (1): 100–117. doi: 10.1785/0220210076
    Miyake H. , Iwata T. , Irikura K. , 2003. Source characterization for broadband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area. Bulletin of the Seismological Society of America, 93(6): 2531—2545. doi: 10.1785/0120020183
    Somerville P. , Irikura K. , Graves R. , et al. , 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1): 59—80. doi: 10.1785/gssrl.70.1.59
    Wang Z. , 2014. Joint inversion of P-wave velocity and Vp-Vs ratio: imaging the deep structure in NE Japan. Applied Geophysics, 11(2): 119—127. doi: 10.1007/s11770-014-0437-1
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  58
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回