Simulation of High-frequency Ground Motions in the Subduction Zone of the Sea Area−Taking the Fukushima MS7.1 Earthquake on February 13, 2021 as an Example
-
摘要: 2021年2月13日,日本福岛近海发生MS7.1地震,震中距海岸线约70 km,震源深度接近60 km,造成了较大范围的震害影响。考虑地震应急及地震动强度特征预测的应用前景等,利用经验格林函数法快速估计了本次地震的高频地震动(1.0~20.0 Hz)空间分布特征及加速度时程,并结合实际地形、场地覆盖层等信息对部分台站地震动模拟结果进行修正,最终获得较可靠的地震动预测结果。研究结果表明,在具备合适小震记录时(余震及前震),可较准确地再现大震的高频地震动主要特征,模拟结果与真实记录拟合较好;地震动模拟过程中需考虑盆地等特殊地形及覆盖土层对地震动的放大作用影响,这也是未来利用经验格林函数法合成大震时需重点考虑的因素。Abstract: On February 13, 2021, an MS7.1 earthquake occurred in the coast of Fukushima, Japan. The epicenter was about 70 km away from the coastline and the focal depth was nearly 60 km, resulting in a wide range of earthquake damage. From the perspective of earthquake emergency and the application prospect of ground motion evaluation, this paper attempts to quickly evaluate the spatial distribution characteristics and acceleration time history of high-frequency ground motion of this earthquake based on the empirical Green's function method, and modifies the ground motion simulation results of some stations in combination with the actual terrain, deep-thickness overburden layer and other information. Finally, more reliable ground motion evaluation results are obtained. The results show that the main characteristics of high-frequency ground motion of large earthquakes can be accurately reproduced when appropriate small earthquake records (aftershocks and foreshocks) are available, and the simulation results are also well fitted with the real records; In the process of ground motion simulation, the influence of basin and other special terrain and thick overburden on the amplification of ground motion need to be considered, which is also the key factor to be considered when synthesizing large earthquakes by empirical Green's function method in the future.
-
表 1 震源参数
Table 1. Parameters of related source
参数 震级 MS7.1 MS4.8 破裂面积/km2 6.29×103 2.76×102 地震矩/dyne·cm 1.54×1026 7.26×1023 震源深度/km 50.7 50.0 剪切波速/km·s−1 4.2 4.2 破裂速度/km·s−1 3.3 3.3 震源上升时间/s 3.04 3.04 表 2 凹凸体参数
Table 2. Parameters of the asperity
参数 数值 凹凸体面积/m2 1.38×109 凹凸体地震矩/dyne·cm 3.40×1025 大、小地震应力降比值C 5.45 划分子断层数量N 4.13 子断层长度dx/km 10.52 子断层宽度dw/km 5.26 表 3 MYGH10台站波速结构
Table 3. The velocity structure of station MYGH10
土层编号 厚度/m 深度/m P波速度
VP/m·s−1剪切波速VS/m·s−1 1 1 1 500 110 2 2 3 1 750 250 3 31 34 1 750 390 4 80 114 1 830 590 5 — — 1 920 770 表 4 台站加速度时程幅值修正系数
Table 4. Correction coefficient of acceleration time history amplitude of each station
台站编号 初始PGA(EW向)/
cm·s−2初始PGA(NS向)/
cm·s−2修正系数 修正后PGA(EW向)/
cm·s−2修正后PGA(NS向)/
cm·s−2FKS002 12.7 17.5 1.4 17.78 24.5 FKS017 3.9 3.5 3.5 13.65 12.3 FKS019 10.3 11.5 1.8 18.54 20.7 MYG014 5.7 6.3 1.5 8.55 9.5 MYGH10 20.1 29.5 2.1 42.21 61.9 -
付长华, 2012. 北京盆地结构对长周期地震动加速度反应谱的影响. 北京: 中国地震局地球物理研究所.Fu C. H., 2012. A study on long-period acceleration response spectrum of ground motion affected by basin structure of Beijing. Beijing: Institute of Geophysics, China EarthquakeAdministration. (in Chinese) 高孟潭, 陈学良, 肖和平等, 2009. 湖南中强地震活动地区Ⅱ类场地放大效应研究. 中国地震, 25(2): 140—150 doi: 10.3969/j.issn.1001-4683.2009.02.004Gao M. T. , Chen X. L. , Xiao H. P. , et al. , 2009. Study on amplification effect of type Ⅱ sites in moderate earthquake area of Hunan. Earthquake Research in China, 25(2): 140—150. (in Chinese) doi: 10.3969/j.issn.1001-4683.2009.02.004 胡进军, 郑鹏, 2017. 基于日本滨海强震数据的不同震源类型的衰减关系比较. 建筑结构, 47(S1): 669—677 doi: 10.19701/j.jzjg.2017.s1.149Hu J. J. , Zheng P. , 2017. Comparison of attenuation relationships of different seismic types based on strong earthquake data in coastal areas Japan. Building Structure, 47(S1): 669—677. (in Chinese) doi: 10.19701/j.jzjg.2017.s1.149 李春果, 王宏伟, 温瑞智等, 2020. 地震动残差分析盆地附加放大效应: 日本关东盆地为例. 震灾防御技术, 15(4): 684—695 doi: 10.11899/zzfy20200403Li C. G. , Wang H. W. , Wen R. Z. , et al. , 2020. Basin extra amplification effects from seismic ground-motion residual analysis: a case study of Kanto Basin, Japan. Technology for Earthquake Disaster Prevention, 15(4): 684—695. (in Chinese) doi: 10.11899/zzfy20200403 李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21—29Li X. J. , 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21—29. (in Chinese) 李宗超, 陈学良, 高孟潭等, 2016. 经验格林函数方法模拟强地面运动的研究进展. 世界地震工程, 32(2): 209—216Li Z. C. , Chen X. L. , Gao M. T. , et al. , 2016. Research progress of empirical Green function method simulation strong ground motion. World Earthquake Engineering, 32(2): 209—216. (in Chinese) 李宗超, 2017. 大震近场地震动数值模拟不确定性研究. 北京: 中国地震局地球物理研究所.Li Z. C., 2017. The uncertainty factors research of near-field ground motion numerical simulation. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese) 李宗超, 高孟潭, 陈学良等, 2019 a. 九寨沟MS7.0地震强地震动模拟及漳扎镇地震动强度预测. 地球物理学报, 62(7): 2567—2581Li Z. C. , Gao M. T. , Chen X. L. , et al. , 2019 a. Simulation of ground motion by the 2017 Jiuzhaigou MS7.0 earthquake and estimation of ground motion intensity in the Zhangzha Town. Chinese Journal of Geophysics, 62(7): 2567—2581. (in Chinese) 李宗超, 高孟潭, 陈学良等, 2019 b. 2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析. 地震学报, 41(1): 100—110Li Z. C. , Gao M. T. , Chen X. L. , et al. , 2019 b. Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016. Acta Seismologica Sinica, 41(1): 100—110. (in Chinese) 罗奇峰, 1989. 近场加速度的半经验合成. 哈尔滨: 中国地震局工程力学研究所.Luo Q. F., 1989. Semi empirical synthesis of near field acceleration. Harbin: Institute of engineering mechanics. Harbin: Institute of Engineering Mechanics, China Seismological Bureau. (in Chinese) 吕红山, 赵凤新, 2007. 适用于中国场地分类的地震动反应谱放大系数. 地震学报, 29(1): 67—76 doi: 10.3321/j.issn:0253-3782.2007.01.008Lü H. S. , Zhao F. X. , 2007. Site coefficients suitable to China site category. Acta Seismologica Sinica, 29(1): 67—76. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.01.008 王建龙, 陈学良, 高孟潭等, 2014. 地震动峰值放大与盆地深度关系的初步数值模拟. 地震工程与工程振动, 34(S1): 167—172 doi: 10.13197/j.eeev.2014.S0.167.wangjl.025Wang J. L. , Chen X. L. , Gao M. T. , et al. , 2014. Preliminary numerical simulation of the dependence of the peak ground motion amplification on the basin depth. Earthquake Engineering and Engineering Dynamics, 34(S1): 167—172. (in Chinese) doi: 10.13197/j.eeev.2014.S0.167.wangjl.025 王亮, 2014. 基于KiK-net强震台网的土层地震动特性研究. 哈尔滨: 中国地震局工程力学研究所.Wang L., 2014. The research of soil layer seismic characteristic based on KiK-net strong-motion network. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 于彦彦, 2016. 三维沉积盆地地震效应研究. 哈尔滨: 中国地震局工程力学研究所.Yu Y. Y., 2016. Research on seismic effects of three-dimensional sedimentary basins. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 张龙飞, 2020. 基于Vs30及PGA放大效应的大同盆地土地防震减灾适宜性规划. 地震工程与工程振动, 40(5): 216—223Zhang L. F. , 2020. Suitability planning of land earthquake prevention and mitigation in Datong basin based on Vs30 and PGA amplification effect. Earthquake Engineering and Engineering Dynamics, 40(5): 216—223. (in Chinese) 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) Boore D. M., 2003. Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 160(3—4): 635—676. Brune J. N. , 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26): 4997—5009. doi: 10.1029/JB075i026p04997 Geller R. J. , 1976. Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66(5): 1501—1523. Hartzell S. H. , 1978. Earthquake aftershocks as Green's functions. Geophysical Research Letters, 5(1): 1—4. doi: 10.1029/GL005i001p00001 Irikura K., 1983. Semi-empirical estimation of strong ground motions during large earthquakes. Bulletin of Disaster Prevention Research Institute, Kyoto University, 33(298): 63—104. Irikura K. , 1986. Prediction of strong acceleration motion using empirical Green’s function. In: Proceedings of the 7 th Japan Earthquake Engineering Symposium. Japan, 151—156. Irikura K. , Kamae K. , 1994. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique. Annals of Geophysics, 37(6): 1721—1743. Irikura K., Miyake H., 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 168(1—2): 85—104. Irikura K., Miyakoshi K., Kamae K., et al., 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake. Earth, Planets and Space, 69(1): 10. Kamae K. , Irikura K. , Pitarka A. , 1998. A technique for simulating strong ground motion using hybrid Green's function. Bulletin of the Seismological Society of America, 88(2): 357—367. doi: 10.1785/BSSA0880020357 Kanamori H. , Anderson D. L. , 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5): 1073—1095. Kanamori H. , 1979. A semi-empirical approach to prediction of long-period ground motions from great earthquakes. Bulletin of the Seismological Society of America, 69(6): 1645—1670. doi: 10.1785/BSSA0690061645 Li Z. C. , Gao M. T. , Jiang H. , et al. , 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion. Acta Geophysica, 66(4): 523—540. doi: 10.1007/s11600-018-0171-9 Li Z. C. , Sun J. Z. , Chen X. L. , et al. , 2021 a. Predicting the near-field strong ground motion based on uncertainties in asperities: an opportunity to reproduce the characteristics of the 1970 Tonghai earthquake (MS 7.8). Journal of Seismology, 25(3): 875—898. doi: 10.1007/s10950-021-09997-w Li Z. C. , Chen X. L. , Chen K. , et al. , 2021 b. Predicting near-field strong ground motion of the Huaxian MS8.5 earthquake based on uncertainty factors of asperities. Pure and Applied Geophysics, 178(3): 889—906. doi: 10.1007/s00024-021-02682-6 Li Z. C. , Sun J. Z. , Fang L. H, et al. , 2022. Reproducing the Spatial Characteristics of High‐Frequency Ground Motions for the 1850 M 7.5 Xichang Earthquake. Seismological Research Letters, 93 (1): 100–117. doi: 10.1785/0220210076 Miyake H. , Iwata T. , Irikura K. , 2003. Source characterization for broadband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area. Bulletin of the Seismological Society of America, 93(6): 2531—2545. doi: 10.1785/0120020183 Somerville P. , Irikura K. , Graves R. , et al. , 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1): 59—80. doi: 10.1785/gssrl.70.1.59 Wang Z. , 2014. Joint inversion of P-wave velocity and Vp-Vs ratio: imaging the deep structure in NE Japan. Applied Geophysics, 11(2): 119—127. doi: 10.1007/s11770-014-0437-1