• ISSN 1673-5722
  • CN 11-5429/P

基于小田原试验场地数据的不同基岩输入模型对预测地震动特征的影响研究

杨笑梅 胡苗 吴晟 陈鑫 赖强林

杨笑梅,胡苗,吴晟,陈鑫,赖强林,2022. 基于小田原试验场地数据的不同基岩输入模型对预测地震动特征的影响研究. 震灾防御技术,17(3):490−501. doi:10.11899/zzfy20220309. doi: 10.11899/zzfy20220309
引用本文: 杨笑梅,胡苗,吴晟,陈鑫,赖强林,2022. 基于小田原试验场地数据的不同基岩输入模型对预测地震动特征的影响研究. 震灾防御技术,17(3):490−501. doi:10.11899/zzfy20220309. doi: 10.11899/zzfy20220309
Yang Xiaomei, Hu Miao, Wu Sheng, Chen Xin, Lai Qianglin. The Influence of Different Bedrock Input Models on Ground Motion Predictions Based on Ashigara Valley Test Site Data[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 490-501. doi: 10.11899/zzfy20220309
Citation: Yang Xiaomei, Hu Miao, Wu Sheng, Chen Xin, Lai Qianglin. The Influence of Different Bedrock Input Models on Ground Motion Predictions Based on Ashigara Valley Test Site Data[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 490-501. doi: 10.11899/zzfy20220309

基于小田原试验场地数据的不同基岩输入模型对预测地震动特征的影响研究

doi: 10.11899/zzfy20220309
基金项目: 国家自然科学基金重点项目(52192675、U1839202)
详细信息
    作者简介:

    杨笑梅,女,生于1968年。副教授,硕士生导师。主要从事地震工程研究工作。E-mail:1572512807@qq.com

The Influence of Different Bedrock Input Models on Ground Motion Predictions Based on Ashigara Valley Test Site Data

  • 摘要: 随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。
  • 图  1  小田原场地位置、东西向局部场地剖面及台站位置分布

    Figure  1.  Ashigara valley site location and 2D partial site profile and station location distributions in east-west direction

    图  2  土体动模量和动阻尼随动应变变化曲线

    Figure  2.  Modulus reduction and damping ratio curves of soil

    图  3  IPM-3基岩等效输入反演过程示意

    Figure  3.  IPM-3 inversion process of equivalent input bedrock

    图  4  各台站二维场地结构模型

    Figure  4.  Two-dimensional station site structure model

    图  5  基底基岩面地震动输入加速度时程曲线

    Figure  5.  Seismic input acceleration time histories at the bottom of the bedrock

    图  6  基底基岩面地震动输入加速度时程傅氏谱

    Figure  6.  The Fourier spectrum of the seismic input acceleration at the bottom of the bedrock

    图  7  1 DELF模型预测加速度时程反应谱

    Figure  7.  Acceleration time history response spectra predicted by 1 DELF model

    图  8  1 DELF模型预测加速度时程

    Figure  8.  Acceleration time histories predicted by 1 DELF model

    图  9  2 DLT模型预测加速度时程反应谱

    Figure  9.  Acceleration time history response spectra predicted by 2 DLT model

    图  10  2 DLT模型预测加速度时程

    Figure  10.  Acceleration time histories predicted by 2 DTL model

    图  11  2 DELT模型预测加速度时程反应谱

    Figure  11.  Acceleration time history response spectra predicted by 2 DELT model

    图  12  2 DELT模型预测加速度时程

    Figure  12.  Acceleration time histories predicted by 2 DELT model

    表  1  土壤参数

    Table  1.   Soil parameters

    项目密度
    /kg·m−3
    S波波速
    /m·s−1
    P波波速
    /m·s−1
    Ap1 400.070.01 500
    Ac1 500.0150.01 500
    Ag1 900.0350.01 800
    Tpm1 400.0160.01 500
    Hpc1 700.0400.01 800
    Hps1 800.0400.01 800
    Hpg2 300.0700.02 000
    Os-22 200.0800.02 200
    下载: 导出CSV

    表  2  输入地震动的峰值加速度

    Table  2.   The peak accelerations of input motions

    地震动输入方式峰值加速度/Gal
    IPM-1 (KD2 )IPM-2 (0.5 KR1)IPM-3 (EQIKR1)
    东西向34.20836.21041.52
    南北向102.82059.89060.760
    下载: 导出CSV

    表  3  1 DELF模型预测的加速度峰值

    Table  3.   The peak ground acceleration predicted by 1 DELF

    项目加速度峰值/Gal
    KS1台站东西向KS1台站南北向KS2台站东西向KS2台站南北向
    地震观测记录230.940182.40103.920223.110
    IPM-1 (KD2)88.040200.88080.540350.670
    IPM-2 (0.5 KR1)138.950141.33966.870178.600
    IPM-3 (EQIKR1)214.520267.14094.470225.410
    下载: 导出CSV

    表  4  2 DLT模型预测的加速度峰值

    Table  4.   The peak ground acceleration predicted by 2 DLT

    项目加速度峰值/Gal
    KS1台站东西向KS1台站南北向KS2台站东西向KS2台站南北向
    地震观测记录230.940182.400103.920223.110
    IPM-167.670285.14046.580253.610
    IPM-288.280145.72097.810118.439
    IPM-3117.146160.13051.700130.390
    下载: 导出CSV

    表  5  2 DELT模型预测的加速度峰值

    Table  5.   The peak ground acceleration predicted by 2 DELT

    项目加速度峰值/Gal
    KS1台站东西向KS1台站南北向KS2台站东西向KS2台站南北向
    地震记录230.94182.40103.92223.11
    IPM-178.40311.5653.39207.50
    IPM-3128.75117.2253.69184.63
    下载: 导出CSV
  • 丁毅, 王玉石, 王宁等, 2021. 地表/井下反应谱比值非线性统计特征与影响因素研究. 震灾防御技术, 16(2): 362—370

    Ding Y. , Wang Y. S. , Wang N. , et al. , 2021. Study on nonlinear statistical characteristics of surface/downhole response spectrum ratio and influencing factors. Technology for Earthquake Disaster Prevention, 16(2): 362—370. (in Chinese)
    李小军, 1992. 场地土层对地震地面运动影响的分析方法. 世界地震工程, (2): 49—60.
    廖振鹏, 2002. 工程波动理论导论. 2版. 北京: 科学出版社.

    Liao Z. P. , 2002. Introduction to wave motion theories in engineering. 2 nd ed. Beijing: Science Press. (in Chinese)
    马俊玲, 丁海平, 2017. 基于等效线性化方法的一维土层地震反应通用计算程序对比. 震灾防御技术, 12(4): 725—742 doi: 10.11899/zzfy20170401

    Ma J. L. , Ding H. P. , 2017. Comparison of general calculation programs for one-dimensional site seismic response based on equivalent linearization method. Technology for Earthquake Disaster Prevention, 12(4): 725—742. (in Chinese) doi: 10.11899/zzfy20170401
    王海云, 2014. 土层场地的放大作用随深度的变化规律研究−以金银岛岩土台阵为例. 地球物理学报, 57(5): 1498—1509.

    Wang H. Y. , 2014. Study on variation of soil site amplification with depth: a case at Treasure Island geotechnical array, San Francisco bay. Chinese Journal of Geophysics, 57(5): 1489—1509. (in Chinese)
    杨笑梅, 赖强林, 2017. 二维土层地震反应分析的时域等效线性化解法. 岩土力学, 38(3): 847—856 doi: 10.16285/j.rsm.2017.03.030

    Yang X. M. , Lai Q. L. , 2017. Time-domain equivalent linearization method for two-dimensional seismic response analysis. Rock and Soil Mechanics, 38(3): 847—856. (in Chinese) doi: 10.16285/j.rsm.2017.03.030
    Chen G. X. , Jin D. D. , Zhu J. , et al. , 2015. Nonlinear analysis on seismic site response of Fuzhou Basin, China. Bulletin of the Seismological Society of America, 105(2 A): 928—949. doi: 10.1785/0120140085
    Gelagoti F. , Kourkoulis R. , Anastasopoulos I. , et al. , 2010. Seismic wave propagation in a very soft alluvial valley: sensitivity to ground-motion details and soil nonlinearity, and generation of a parasitic vertical component. Bulletin of the Seismological Society of America, 100(6): 3035—3054. doi: 10.1785/0120100002
    Guidotti R. , Stupazzini M. , Smerzini C. , et al. , 2011. Numerical study on the role of basin geometry and kinematic seismic source in 3 D ground motion simulation of the 22 February 2011 Mw 6.2 Christchurch earthquake. Seismological Research Letters, 82(6): 767—782. doi: 10.1785/gssrl.82.6.767
    Hashash Y. M. A., Groholski D. R., Phillips C. A., et al., 2011. DEEPSOIL 5.0, user manual and tutorial. Champaign: University of Illinois at Urbana-Champaign.
    Idriss I. M. , Seed H. B. , 1968. Seismic response of horizontal soil layers. Journal of the Soil Mechanics and Foundations Division, 94(4): 1003—1031. doi: 10.1061/JSFEAQ.0001163
    Khanbabazadeh H. , Iyisan R. , Ansal A. , et al. , 2018. Nonlinear dynamic behavior of the basins with 2 D bedrock. Soil Dynamics and Earthquake Engineering, 107: 108—115. doi: 10.1016/j.soildyn.2018.01.011
    Kudo K., Sawada Y., 1992. Blind prediction experiments at Ashigara Valley, Japan. In Proceedings of the 10 th World Conference on Earthquake Engineering. 6967—6971.
    Ragozzino E. , 2014. Nonlinear seismic response in the western L'Aquila basin (Italy): Numerical FEM simulations vs. ground motion records. Engineering Geology, 174: 46—60.
    Raptakis D. , Chávez-Garcı́a F. J. , Makra K. , et al. , 2000. Site effects at Euroseistest—I. Determination of the valley structure and confrontation of observations with 1 D analysis. Soil Dynamics and Earthquake Engineering, 19(1): 1—22.
    Riga E. , Makra K. , Pitilakis K. , 2018. Investigation of the effects of sediments inhomogeneity and nonlinearity on aggravation factors for sedimentary basins. Soil Dynamics and Earthquake Engineering, 110: 284—299. doi: 10.1016/j.soildyn.2018.01.016
    Roten D. , Fäh D. , Bonilla L. F. , et al. , 2009. Estimation of non-linear site response in a deep Alpine valley. Geophysical Journal International, 178(3): 1597—1613. doi: 10.1111/j.1365-246X.2009.04246.x
    Stupazzini M. , Paolucci R. , Igel H. , 2009. Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code. Bulletin of the Seismological Society of America, 99(1): 286—301. doi: 10.1785/0120080274
    Zahradník J., Moczo P., Hron F., 1994. Blind prediction of the site effects at Ashigara Valley, Japan, and its comparison with reality. Natural Hazards, 10(1—2): 149—170.
    Zhang X. L. , Peng X. B. , Li X. J. , et al. , 2020. Seismic effects of a small sedimentary basin in the eastern Tibetan plateau based on numerical simulation and ground motion records from aftershocks of the 2008 Mw7.9 Wenchuan, China earthquake. Journal of Asian Earth Sciences, 192: 104257. doi: 10.1016/j.jseaes.2020.104257
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  95
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回