• ISSN 1673-5722
  • CN 11-5429/P

典型斜坡地形地震动特征分析

丁佳龙 郝冰 李远东 周港圣 周正华

丁佳龙,郝冰,李远东,周港圣,周正华,2022. 典型斜坡地形地震动特征分析. 震灾防御技术,17(3):473−480. doi:10.11899/zzfy20220307. doi: 10.11899/zzfy20220307
引用本文: 丁佳龙,郝冰,李远东,周港圣,周正华,2022. 典型斜坡地形地震动特征分析. 震灾防御技术,17(3):473−480. doi:10.11899/zzfy20220307. doi: 10.11899/zzfy20220307
Ding Jialong, Hao Bing, Li Yuandong, Zhou Gangsheng, Zhou Zhenghua. Analysis of Ground Motion Characteristics of Typical Slope Terrain[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 473-480. doi: 10.11899/zzfy20220307
Citation: Ding Jialong, Hao Bing, Li Yuandong, Zhou Gangsheng, Zhou Zhenghua. Analysis of Ground Motion Characteristics of Typical Slope Terrain[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 473-480. doi: 10.11899/zzfy20220307

典型斜坡地形地震动特征分析

doi: 10.11899/zzfy20220307
基金项目: 国家自然科学基金(U2039208、U1839202)
详细信息
    作者简介:

    丁佳龙,男,生于1997年。硕士研究生。主要从事地震反应分析研究。E-mail:903027105@qq.com

    通讯作者:

    周正华,男,生于1962年。博士后,研究员,博士生导师。主要从事近场波动数值模拟等方面研究。E-mail:bjsmoc@163.com

Analysis of Ground Motion Characteristics of Typical Slope Terrain

  • 摘要: 以云南鲁甸6.5级地震中房屋建筑破坏严重的龙头山集镇斜坡地形为例,通过地脉动测试分析得出斜坡及坡顶测点相对于坡脚参考点谱比峰值均>1,顺坡向谱比峰值大于垂直坡向谱比峰值,且谱比峰值从斜坡坡脚到坡顶逐渐增大,坡顶处约为3;顺坡向谱比峰值对应的频率为4.57~5.39 Hz,垂直坡向谱比峰值对应的频率稍高,为5.42~5.96 Hz。通过结合黏弹性边界的时域动力有限元方法分析斜坡地形在垂直入射地震动作用下的响应,数值模拟结果表明,斜坡坡顶处的位移放大作用显著,坡脚处放大作用较小;介质剪切波速对斜坡地震动的影响较明显,尤其是坡顶点处不同介质剪切波速模型位移峰值差异较大。由于斜坡地形复杂的散射效应,在斜坡及附近测点均出现明显的转换面波,坡顶点处波形转换最显著。数值模拟结果进一步验证了龙头山集镇依坡而建的房屋建筑破坏严重是由局部地形地震动放大效应与地震动差动共同作用引起的。
  • 图  1  斜坡上房屋建筑倒塌破坏

    Figure  1.  Collapse buildings on slopes

    图  2  斜坡地形剖面及测点布置示意(单位:米)

    Figure  2.  Schematic diagram of slope topographic profile and observation point location(Unit:m)

    图  3  谱比曲线

    Figure  3.  Spectral ratio curves

    图  4  斜坡模型及测点布置示意(单位:米)

    Figure  4.  Schematic diagram of slope model and observation point location(Unit:m)

    图  5  斜坡二维有限元分析模型

    Figure  5.  Schematic diagram of 2D finite element analysis model of slope

    图  6  输入脉冲地震动及其傅里叶振幅谱

    Figure  6.  Input pulse ground motion and its Fourier amplitude spectrum

    图  7  测点位移反应

    Figure  7.  Displacement response of observation points

    图  8  测点动力放大系数

    Figure  8.  Dynamic magnification coefficient of each observation point

    图  9  测点位移峰值比

    Figure  9.  Displacement peak ratio of each observation point

    图  10  测点质点运动轨迹(单位:米)

    Figure  10.  Particle trajectory diagram of each observation point(Unit:m)

    表  1  斜坡测点及坡顶测点相对于坡脚测点地脉动谱比

    Table  1.   Spectral ratio results of measuring points relative to slope

    测点编号方向谱比卓越频率/Hz谱比峰值
    P2垂直坡向5.961.01
    顺坡向4.571.03
    P3垂直坡向5.791.04
    顺坡向4.851.33
    P4垂直坡向5.661.20
    顺坡向5.361.83
    P5垂直坡向5.811.76
    顺坡向4.892.33
    P6垂直坡向5.422.83
    顺坡向5.393.01
    下载: 导出CSV
  • 邓鹏, 2020. 单体边坡地形的地震动力响应及其放大效应的数值分析. 地震学报, 42(3): 349—361 doi: 10.11939/jass.20190133

    Deng P. , 2020. Numerical parametric study of seismic dynamic response and amplification effects of slope topography. Acta Seismologica Sinica, 42(3): 349—361. (in Chinese) doi: 10.11939/jass.20190133
    丁海平, 于彦彦, 郑志法, 2017. P波斜入射陡坎地形对地面运动的影响. 岩土力学, 38(6): 1716—1724, 1732

    Ding H. P. , Yu Y. Y. , Zheng Z. F. , 2017. Effects of scarp topography on seismic ground motion under inclined P waves. Rock and Soil Mechanics, 38(6): 1716—1724, 1732. (in Chinese)
    顾亮, 丁海平, 于彦彦, 2017. SV波斜入射陡坎地形对地面运动的影响. 自然灾害学报, 26(4): 39—47

    Gu L. , Ding H. P. , Yu Y. Y. , 2017. Effects of scarp topography on seismic ground motion under inclined SV waves. Journal of Natural Disasters, 26(4): 39—47. (in Chinese)
    郝明辉, 张郁山, 2014. 凸起地形对地震动特性的影响. 地震学报, 36(5): 883—894

    Hao M. H. , Zhang Y. S. , 2014. Analysis of terrain effect on the properties of ground motion. Acta Seismologica Sinica, 36(5): 883—894. (in Chinese)
    郝明辉, 张郁山, 赵凤新, 2021. 坡地地形对地震动特性的影响分析. 震灾防御技术, 16(2): 229—236 doi: 10.11899/zzfy20210201

    Hao M. H. , Zhang Y. S. , Zhao F. X. , 2021. Analysis of slope terrain effect on the properties of ground motion. Technology for Earthquake Disaster Prevention, 16(2): 229—236. (in Chinese) doi: 10.11899/zzfy20210201
    廖振鹏, 杨柏坡, 袁一凡, 1981. 三维地形对地震地面运动的影响. 地震工程与工程振动, 1(1): 56—77 doi: 10.13197/j.eeev.1981.01.007

    Liao Z. P. , Yang B. P. , Yuan Y. F. , 1981. Effects of three-dimensional topography on earthquake ground motion. Earthquake Engineering and Engineering Vibration, 1(1): 56—77. (in Chinese) doi: 10.13197/j.eeev.1981.01.007
    廖振鹏, 1984. 近场波动问题的有限元解法. 地震工程与工程振动, 4(2): 1—14 doi: 10.13197/j.eeev.1984.02.005

    Liao Z. P. , 1984. A finite element method for near-field wave motion in heterogeneous materials. Earthquake Engineering and Engineering Vibration, 4(2): 1—14. (in Chinese) doi: 10.13197/j.eeev.1984.02.005
    刘必灯, 周正华, 刘培玄等, 2011. SV波入射情况下V型河谷地形对地震动的影响分析. 地震工程与工程振动, 31(2): 17—24

    Liu B. D. , Zhou Z. H. , Liu P. X. , et al. , 2011. Influence of V-shaped canyon site on ground motions for incident SV waves. Earthquake Engineering and Engineering Vibration, 31(2): 17—24. (in Chinese)
    刘晶波, 宝鑫, 谭辉等, 2020. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法. 土木工程学报, 53(8): 87—96

    Liu J. B. , Bao X. , Tan H. , et al. , 2020. Seismic wave input method for soil-structure dynamic interaction analysis based on internal substructure. China Civil Engineering Journal, 53(8): 87—96. (in Chinese)
    唐为民, 马淑芝, 刘小浪等, 2019. 地形地貌条件对边坡动力响应规律的影响. 长江科学院院报, 36(11): 98—103, 109 doi: 10.11988/ckyyb.20180443

    Tang W. M. , Ma S. Z. , Liu X. L. , et al. , 2019. Influence of topographic and geomorphic conditions on the dynamic response of slope acceleration. Journal of Yangtze River Scientific Research Institute, 36(11): 98—103, 109. (in Chinese) doi: 10.11988/ckyyb.20180443
    万子轩, 梁春涛, 罗永红, 2020. 斜坡地形效应模拟研究. 防灾科技学院学报, 22(1): 1—9 doi: 10.3969/j.issn.1673-8047.2020.01.001

    Wan Z. X. , Liang C. T. , Luo Y. H. , 2020. Numerical simulation study on slope topographic effects. Journal of Institute of Disaster Prevention, 22(1): 1—9. (in Chinese) doi: 10.3969/j.issn.1673-8047.2020.01.001
    王荐霖, 王运生, 辛聪聪, 2018. 九寨沟MS4.5级地震斜坡体及覆盖层的动响应分析. 中国科技论文, 13(21): 2401—2407 doi: 10.3969/j.issn.2095-2783.2018.21.001

    Wang J. L. , Wang Y. S. , Xin C. C. , 2018. Analysis of slope and overburden seismic response during the Jiuzhaigou MS4.5 earthquake. China Sciencepaper, 13(21): 2401—2407. (in Chinese) doi: 10.3969/j.issn.2095-2783.2018.21.001
    夏坤, 董林, 李璐, 2019. 黄土斜坡动力响应特征分析. 地震工程学报, 41(3): 694—701 doi: 10.3969/j.issn.1000-0844.2019.03.694

    Xia K. , Dong L. , Li L. , 2019. Dynamic response characteristics of loess slopes. China Earthquake Engineering Journal, 41(3): 694—701. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.03.694
    张迎宾, 柳静, 唐云波等, 2021. 考虑边坡地形效应的地震动力响应分析. 地震工程学报, 43(1): 142—153

    Zhang Y. B. , Liu J. , Tang Y. B. , et al. , 2021. Dynamic response analysis of seismic slopes considering topographic effect. China Earthquake Engineering Journal, 43(1): 142—153. (in Chinese)
    Ashford S. A. , Sitar N. , 1997. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bulletin of the Seismological Society of America, 87(3): 692—700. doi: 10.1785/BSSA0870030692
    Jeong S. , Asimaki D. , Dafni J. , et al. , 2019. How topography-dependent are topographic effects? Complementary numerical modeling of centrifuge experiments. Soil Dynamics and Earthquake Engineering, 116: 654—667. doi: 10.1016/j.soildyn.2018.10.028
    Kagami H. , Okada S. , Shiono K. , et al. , 1986. Observation of 1- to 5-second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of Site effects in the San Fernando Valley. Bulletin of the Seismological Society of America, 76(6): 1801—1812.
    Shabani M. J. , Shamsi M. , Ghanbari A. , 2021. Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction. Earthquakes and Structures, 20(2): 187—200.
    Zhang Y. B. , Chen G. Q. , Zheng L. , et al. , 2013. Effects of geometries on three-dimensional slope stability. Canadian Geotechnical Journal, 50(3): 233—249. doi: 10.1139/cgj-2012-0279
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  56
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-22
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回