Study on Scaling Ratios for Spectral Accelerations of Ground Motion Due to Site Conditions
-
摘要: 场地条件对地震动特性影响显著,在抗震设计反应谱的确定过程中,需根据场地条件对加速度反应谱予以相应的调整。已有场地条件影响调整方案研究成果,均基于数值模拟或局部地区强震动记录统计,多数仅给出了峰值加速度PGA场地条件影响调整系数,对非线性的考虑缺乏观测数据依据。为此在全球强震动记录统计获得的PGA归一化加速度反应谱和日本钻井台阵记录获得的加速度反应谱平台值非线性衰减指数的基础上,结合钻孔模型数值模拟和近期研究成果,建立了考虑场地条件影响非线性的地震动加速度反应谱场地条件影响调整系数方案。Abstract: The characteristics of ground motion are significantly affected by site conditions. During the determination of seismic design spectra, it is necessary to adjust the spectral accelerations according to the site conditions. Most of the current adjustment schemes only gave the peak acceleration (PGA) scaling ratios lacking of observing basis for considering the nonlinearity, which were based on numerical simulations of borehole models or statistics of local strong motion records. Based on the PGA normalized spectral accelerations obtained from the statistics of global strong motion records and the nonlinear attenuation exponents for platform values of spectral accelerations obtained from the records of Japanese borehole arrays, combined with the numerical simulation of borehole models and the previous research results, a novel scaling ratios for spectral accelerations of ground motion due to site conditions considering the nonlinearity is established in this paper.
-
Key words:
- Strong motion /
- Site condition /
- Seismic site effect /
- Spectral acceleration /
- Site scaling ratio
-
图 9 Ⅱ、Ⅲ、Ⅳ类场地相对于I1类场地的地震动加速度反应谱场地条件影响调整系数
Figure 9. Scaling ratios for spectral accelerations of ground motion due to site conditions on site classification II, III, and IV with respect to site classification I1 when PGA (a) ≤0.5 m·s−2, (b) =1.0 m·s−2, (c) =1.5 m·s−2, (d) =2.0 m·s−2, (e) =3.0 m·s−2, and (f) ≥4.0 m·s−2 on site classification I1
表 1 我国场地条件分类标准
Table 1. Classification basis of site conditions in China
岩石的剪切波速或土的等效剪切波速/m·s−1 Ⅰ0 Ⅰ1 Ⅱ Ⅲ Ⅳ 覆盖层厚度/m VS>800 0 — — — — 800≥VS>500 — 0 — — — 500≥VSE>250 — <5 ≥5 — — 250≥VSE>150 — <3 3~50 >50 — VSE≤150 — <3 3~15 15~80 >80 注:表中VS系岩石的剪切波速。 表 2 近期研究及本文钻孔模型给出的PGA场地条件影响调整系数(PGA≤0.5 m·s−2)
Table 2. Scaling ratios for PGA due to site conditions given in recent researches (PGA ≤ 0.5 m·s−2)
参考文献 Ⅰ类场地 Ⅱ类场地 Ⅲ类场地 Ⅳ类场地 统计数据 薄景山(1998) 0.98 1.00# 0.99# — 美国西部235条强震动记录 李小军等(2001b) 1.00 1.50 1.10 0.80 我国188个钻孔数值模拟 耿淑伟(2005) 0.53 1.00 2.00# 0.74 美国西部470条强震动记录 吕红山等(2007) 0.80 1.00 1.20 1.60# 美国几十个台站钻孔数值模拟 赵艳等(2009) 1.00 1.00# 3.00# — 美国812条强震动记录 刘峥等(2009) 1.00 — — 1.16 美国西部728条强震动记录 郭锋等(2011) 1.00 1.80 1.29 1.10 日本484条强震动记录 兰景岩等(2012) 0.96 1.30 1.25 1.29 我国235个钻孔数值模拟 崔昊等(2016) 0.70 1.00 0.90 — 日本1 609组强震动记录 卞方东等(2017) 0.80 1.00 1.20 1.15 日本1 233组强震动记录 本文钻孔模型平均值 1.00 1.45 1.28 1.01 我国1 130个钻孔数值模拟 近期研究成果平均值 1.00 1.48 1.32 1.16 注:标#数据未参与平均值统计 表 3 PGA场地条件影响调整系数
Table 3. Scaling ratios for PGA due to site conditions with PGA on site classification I1
场地类别 I1类场地PGA/m·s−2 ≤0.5 1.0 1.5 2.0 3.0 ≥4.0 I0 0.90 0.90 0.90 0.90 0.90 0.90 I1 1.00 1.00 1.00 1.00 1.00 1.00 Ⅱ 1.48 1.46 1.45 1.44 1.43 1.42 Ⅲ 1.32 1.28 1.26 1.25 1.24 1.23 Ⅳ 1.16 1.10 1.07 1.05 1.02 1.00 表 4 T=0.30 s加速度反应谱场地条件影响调整系数
Table 4. Scaling ratios for Sa(T=0.30 s) due to site conditions with PGA on site classification I1
场地类别 I1类场地PGA/m·s−2 ≤0.5 1.0 1.5 2.0 3.0 ≥4.0 I0 0.90 0.90 0.90 0.90 0.90 0.90 I1 1.00 1.00 1.00 1.00 1.00 1.00 Ⅱ 1.67 1.65 1.64 1.63 1.61 1.60 Ⅲ 1.64 1.60 1.58 1.57 1.55 1.53 Ⅳ 1.43 1.36 1.33 1.30 1.26 1.24 表 5 T=1.00 s加速度反应谱场地条件影响调整系数
Table 5. Scaling ratios for Sa(T=1.00 s) due to site conditions with PGA on site classification I1
场地类别 I1类场地PGA/m·s−2 ≤0.5 1.0 1.5 2.0 3.0 ≥4.0 I0 0.90 0.90 0.90 0.90 0.90 0.90 I1 1.00 1.00 1.00 1.00 1.00 1.00 Ⅱ 1.97 1.94 1.93 1.92 1.90 1.89 Ⅲ 2.28 2.23 2.20 2.18 2.15 2.13 Ⅳ 2.56 2.44 2.38 2.33 2.27 2.22 表 6 T=3.00 s加速度反应谱场地条件影响调整系数
Table 6. Scaling ratios for Sa(T=3.00 s) due to site conditions with PGA on site classification I1
场地类别 I1类场地PGA/m·s−2 ≤0.5 1.0 1.5 2.0 3.0 ≥4.0 I0 0.90 0.90 0.90 0.90 0.90 0.90 I1 1.00 1.00 1.00 1.00 1.00 1.00 Ⅱ 1.84 1.82 1.80 1.79 1.78 1.77 Ⅲ 3.20 3.13 3.09 3.06 3.02 2.99 Ⅳ 3.89 3.71 3.61 3.54 3.44 3.37 -
卞方东, 丁海平, 2017. 基于KiK-net强震记录场地放大系数的深度校正因子估计及应用. 苏州科技大学学报(工程技术版), 30(4): 14—19, 56 doi: 10.3969/j.issn.1672-0679.2017.04.003Bian F. D. , Ding H. P. , 2017. Estimation and application of depth correction factor for site coefficient based on KiK-net strong-motion seismograph network. Journal of Suzhou University of Science and Technology (Engineering and Technology), 30(4): 14—19, 56. (in Chinese) doi: 10.3969/j.issn.1672-0679.2017.04.003 薄景山, 1998. 场地分类和设计反应谱调整方法研究. 哈尔滨: 中国地震局工程力学研究所.Bo J. S. , 1998. Site classification and design response spectrum adjustment method. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 薄景山, 李琪, 齐文浩等, 2021. 场地条件对地震动和震害影响的研究进展与建议. 吉林大学学报: 地球科学版, 51(5): 1295—1305Bo J. S. , Li Q. , Qi W. H. , et al. , 2021. Research progress and discussion of site condition effect on ground motion and earthquake damage. Journal of Jilin University (Earth Science Edition), 51(5): 1295—1305. (in Chinese) 崔昊, 丁海平, 2016. 基于KiK-net强震记录的场地调整系数估计. 地震工程与工程振动, 36(4): 147—152 doi: 10.13197/j.eeev.2016.04.147.cuih.017Cui H. , Ding H. P. , 2016. Estimation of site coefficient based on KiK-net strong-motion seismograph network. Earthquake Engineering and Engineering Vibration, 36(4): 147—152. (in Chinese) doi: 10.13197/j.eeev.2016.04.147.cuih.017 丁毅, 王玉石, 王宁等, 2021. 地表/井下反应谱比值非线性统计特征与影响因素研究. 震灾防御技术, 16(2): 362—370Ding Y. , Wang Y. S. , Wang N. , et al. , 2021. Study on nonlinear statistical characteristics of surface/downhole response spectrum ratio and influencing factors. Technology for Earthquake Disaster Prevention, 16(2): 362—370. (in Chinese) 耿淑伟, 2005. 抗震设计规范中地震作用的规定. 哈尔滨: 中国地震局工程力学研究所, 44—69Geng S. W., 2005. Strong ground motion input parameter for seismic design. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 44—69. (in Chinese) 郭锋, 吴东明, 许国富等, 2011. 场地条件对抗震设计反应谱最大值的影响. 土木工程与管理学报, 28(1): 69—72 doi: 10.3969/j.issn.2095-0985.2011.01.015Guo F. , Wu D. M. , Xu G. F. , et al. , 2011. Effect of site condition on the maximum value of seismic design response spectrum. Journal of Civil Engineering and Management, 28(1): 69—72. (in Chinese) doi: 10.3969/j.issn.2095-0985.2011.01.015 胡聿贤, 孙平善, 章在墉等, 1980. 场地条件对震害和地震动的影响. 地震工程与工程振动, 0(试刊): 34—41 doi: 10.13197/j.eeev.1980.00.003Hu Y. X. , Sun P. S. , Zhang Z. Y. , et al. , 1980. Effects of site conditions on earthquake damage and ground motion. Earthquake Engineering and Engineering Vibration, 0(0): 34—41. (in Chinese) doi: 10.13197/j.eeev.1980.00.003 胡聿贤, 2006. 地震工程学. 2版. 北京: 地震出版社.Hu Y. X. , 2006. Earthquake engineering. 2 nd ed. Beijing: Seismological Press. (in Chinese) 兰景岩, 吕悦军, 刘红帅, 2012. 地震动强度及频谱特征对场地地震反应分析结果的影响. 震灾防御技术, 7(1): 37—45 doi: 10.3969/j.issn.1673-5722.2012.01.004Lan J. Y. , Lv Y. J. , Liu H. S. , 2012. Influence of intensity and frequency of ground motion on site earthquake response. Technology for Earthquake Disaster Prevention, 7(1): 37—45. (in Chinese) doi: 10.3969/j.issn.1673-5722.2012.01.004 李小军, 彭青, 刘文忠, 2001 a. 设计地震动参数确定中的场地影响考虑. 世界地震工程, 17(4): 34—41Li X. J. , Pen Q. , Liu W. Z. , 2001 a. Consideration of site effects for determination of design earthquake ground motion parameters. Word Information on Earthquake Engineering, 17(4): 34—41. (in Chinese) 李小军, 彭青, 2001 b. 不同类别场地地震动参数的计算分析. 地震工程与工程振动, 21(1): 29—36 doi: 10.13197/j.eeev.2001.01.006Li X. J. , Peng Q. , 2001 b. Calculation and analysis of earthquake ground motion parameters for different site categories. Earthquake Engineering and Engineering Vibration, 21(1): 29—36. (in Chinese) doi: 10.13197/j.eeev.2001.01.006 李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21—29Li X. J. , 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21—29. (in Chinese) 李小军, 李娜, 王巨科等, 2021. 场地地震动水平/竖向谱比与地表/基底谱比差异及修正水平/竖向谱比法研究. 震灾防御技术, 16(1): 81—90Li X. J. , Li N. , Wang J. K. , et al. , 2021. Difference between horizontal-to-vertical spectral ratio and surface-to-bedrock spectral ratio of strong-motion and modified horizontal-to-vertical spectral ratio method. Technology for Earthquake Disaster Prevention, 16(1): 81—90. (in Chinese) 刘峥, 沈建文, 石树中等, 2009. 软土对基岩峰值加速度的放大作用. 同济大学学报(自然科学版), 37(5): 607—611Liu Z. , Shen J. W. , Shi S. Z. , et al. , 2009. Soft soil amplification of peak ground acceleration. Journal of Tongji University (Natural Science), 37(5): 607—611. (in Chinese) 吕红山, 赵凤新, 2007. 适用于中国场地分类的地震动反应谱放大系数. 地震学报, 29(1): 67—76 doi: 10.3321/j.issn:0253-3782.2007.01.008Lü H. S. , Zhao F. X. , 2007. Site coefficients suitable to China site category. Acta Seismologica Sinica, 29(1): 67—76. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.01.008 吕悦军, 彭艳菊, 兰景岩等, 2008. 场地条件对地震动参数影响的关键问题. 震灾防御技术, 3(2): 126—135 doi: 10.3969/j.issn.1673-5722.2008.02.003Lu Y. J. , Peng Y. J. , Lan J. Y. , et al. , 2008. Some key problems about site effects on seismic ground motion parameters. Technology for Earthquake Disaster Prevention, 3(2): 126—135. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.02.003 王玉石, 李小军, 赵雷等, 2016. 基于统计的核电厂地震裕量分析建议反应谱. 核动力工程, 37(3): 43—46 doi: 10.13832/j.jnpe.2016.03.0043Wang Y. S. , Li X. J. , Zhao L. , et al. , 2016. Suggested spectral accelerations for seismic margin assessments of nuclear power plants based on statistics. Nuclear Power Engineering, 37(3): 43—46 (in Chinese) doi: 10.13832/j.jnpe.2016.03.0043 王玉石, 李小军, 刘爱文等, 2020. 基于统计数据的非基岩核电厂抗震设计谱研究. 核动力工程, 41(3): 115—120 doi: 10.13832/j.jnpe.2020.03.0115Wang Y. S. , Li X. J. , Liu A. W. , et al. , 2020. Study on spectral accelerations for seismic design of nuclear power plants on non-bedrock sites based on statistical data. Nuclear Power Engineering, 41(3): 115—120. (in Chinese) doi: 10.13832/j.jnpe.2020.03.0115 赵艳, 郭明珠, 李化明等, 2009. 对比分析中国有关场地条件对设计反应谱最大值的影响. 地震地质, 31(1): 186—196 doi: 10.3969/j.issn.0253-4967.2009.01.017Zhao Y. , Guo M. Z. , Li H. M. , et al. , 2009. Contrast analysis of effect of site condition on the maximum of design response spectra. Seismology and Geology, 31(1): 186—196. (in Chinese) doi: 10.3969/j.issn.0253-4967.2009.01.017 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration, 2016. GB18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010(2016年版) 建筑抗震设计规范. 北京: 中国建筑工业出版社, 18—35Ministry of Housing and Urban Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press, 18—35. (in Chinese) Aki K., 1993. Local site effects on weak and strong ground motion. Tectonophysics, 218(1—3): 93—111. Boore D. M. , 2004. Estimating V̄s(30) (or NEHRP Site Classes) from shallow velocity models (Depths < 30 m). Bulletin of the Seismological Society of America, 94(2): 591—597. doi: 10.1785/0120030105 Seed H. B. , Idriss I. M. , 1969. Influence of soil conditions on ground motions during earthquakes. Journal of the Soil Mechanics and Foundations Division, 95(1): 99—137. doi: 10.1061/JSFEAQ.0001260 Stewart J. P., Seyhan E., 2013. Semi-empirical nonlinear site amplification and its application in NEHRP site factors. Berkeley: University of California.