• ISSN 1673-5722
  • CN 11-5429/P

盆地对三分量地震动持时的影响初探

张灿旭 马完君 王舜禹 朱健 卢建旗 谢志南

张灿旭,马完君,王舜禹,朱健,卢建旗,谢志南,2022. 盆地对三分量地震动持时的影响初探. 震灾防御技术,17(3):442−453. doi:10.11899/zzfy20220304. doi: 10.11899/zzfy20220304
引用本文: 张灿旭,马完君,王舜禹,朱健,卢建旗,谢志南,2022. 盆地对三分量地震动持时的影响初探. 震灾防御技术,17(3):442−453. doi:10.11899/zzfy20220304. doi: 10.11899/zzfy20220304
Zhang Canxu, Ma Wanjun, Wang Shunyu, Zhu Jian, Lu Jianqi, Xie Zhinan. Primary Exploration of the Basin Effect on Significant Duration[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 442-453. doi: 10.11899/zzfy20220304
Citation: Zhang Canxu, Ma Wanjun, Wang Shunyu, Zhu Jian, Lu Jianqi, Xie Zhinan. Primary Exploration of the Basin Effect on Significant Duration[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 442-453. doi: 10.11899/zzfy20220304

盆地对三分量地震动持时的影响初探

doi: 10.11899/zzfy20220304
基金项目: 中国地震局工程力学研究所基本科研业务费专项资助项目(2018B02);国家自然科学基金(U2039209);黑龙江省自然科学基金(YQ2020E005)
详细信息
    作者简介:

    张灿旭,男,生于1993年。硕士研究生。主要从事地震动特性分析。E-mail:ZhangCanxu_520@163.com

    通讯作者:

    谢志南,男,生于1984年。博士生导师。主要从事地震波动数值模拟与强地震动预测工作。E-mail:wla_2012@163.com

Primary Exploration of the Basin Effect on Significant Duration

  • 摘要: 利用关东盆地及其周边KiK-net台网井上台站记录的2004—2017年15次中强地震(矩震级为5.1~6.9级)构建三分量记录显著持时Ds5-95数据库。针对该数据库,基于残差分析方法和3种水平向地震动持时参数预测方程,计算并给出事件间残差和事件内残差及其随不同类别参数的变化。在此基础上,初步探讨了水平向地震动持时预测方程应用于预测竖向地震动持时的可行性及盆地对三分量地震动持时的影响。研究结果表明,对于震源距和场地VS30相当的情况,盆地内台站持时普遍大于盆地外台站持时,盆地内、外台站竖向地震动持时均大于水平向地震动持时;3种预测方程均可实现对盆地外台站水平向地震动Ds5-95的合理估计,但在一定程度上低估了盆地内台站的水平向地震动Ds5-95;3种预测方程均无法直接应用于竖向地震动持时预测。
  • 图  1  震中-台站方位的分布

    Figure  1.  Orientation distribution of earthquake epicenters and stations

    图  2  构建持时数据库中各参数的分布情况

    Figure  2.  Distribution of parameters in constructed duration database

    图  3  Ds5-95计算示意及Husid函数

    Figure  3.  Significant duration Ds5-95 using the Husid plot for acceleration time history

    图  4  三分量地震动记录显著持时Ds5-95随断层距Rrup的分布

    Figure  4.  Distribution of significant duration Ds5-95 for three-component ground motion records versus rupture distance Rrup

    图  5  不同持时预测方程显著持时Ds5-95的事件间残差随矩震级的变化

    Figure  5.  The inter-event residual and of significant duration Ds5-95 versus moment magnitude MW in different duration ground motion prediction equations

    图  6  不同持时预测方程显著持时Ds5-95的事件内残差及分组均值标准差随断层距的变化

    Figure  6.  The intra-event residual and their binned means and ±1 standard deviations of significant duration Ds5-95 versus rupture distance Rrup in different duration ground motion prediction equations

    7  不同持时预测方程显著持时Ds5-95的事件内残差及分组均值标准差随矩震级的变化。

    7.  The intra-event residual and their binned means and ±1 standard deviations of significant duration Ds5-95 versus moment magnitude Mw in different duration ground motion prediction equations

    图  8  不同持时预测方程显著持时Ds5-95的事件内残差及分组均值标准差随VS30的变化

    Figure  8.  The intra-event residual and their binned means and ±1 standard deviations of significant duration Ds5-95 versus VS30 in different duration ground motion prediction equations

    图  9  不同持时预测方程显著持时Ds5-95的事件内残差及同一Z2.5值对应的残差均值随Z2.5的变化

    Figure  9.  The intra-event residual and mean residual of the same Z2.5 value of significant duration Ds5-95 versus Z2.5 in different duration ground motion prediction equations

    表  1  地震基本信息

    Table  1.   Information of selected crustal earthquakes

    发震时间矩震级MW震中纬度/ °震中经度/ °断层距范围/ km事件台站数量/ 个事件记录总数/ 条
    2004年10月23日17时56分6.637.289 5138.870 341.8~258.462186
    2004年10月23日18时34分6.337.303 3138.933 248.0~263.361183
    2007年07月16日10时13分6.637.556 8138.609 572.8~297.763189
    2011年03月12日03时59分6.336.986 0138.597 822.6~248.462186
    2011年03月16日12时52分5.835.837 0140.906 510.0~220.860180
    2011年03月19日18时56分5.836.783 7140.571 57.7~201.464192
    2011年04月11日17时16分6.736.945 7140.672 712.8~227.765195
    2011年04月11日20时42分5.536.966 0140.635 020.8~233.764192
    2011年04月12日14时07分5.937.052 5140.643 525.1~239.065195
    2011年04月13日10时08分5.336.915 0140.709 716.6~229.364192
    2012年03月14日21时05分6.035.747 7140.932 08.7~226.161183
    2013年09月20日02时25分5.437.051 3140.695 317.6~231.859177
    2016年11月22日05时59分6.937.354 7141.604 279.9~296.064192
    2016年12月28日21时38分5.936.720 2140.574 26.2~203.464192
    2017年08月02日02时02分5.136.803 5140.535 28.3~202.661183
    下载: 导出CSV

    表  2  台站基本信息

    Table  2.   Information of selected stations inside and outside Kanto basin

    台站编码位于盆地内外情况纬度/ °经度/ °台站编码位于盆地内外情况纬度/ °经度/ °
    CHBH06盆地内35.721 5140.504 6GNMH12盆地外36.144 0138.912 9
    CHBH10盆地内35.545 8140.241 7GNMH13盆地外36.862 0139.062 7
    CHBH13盆地内35.830 7140.298 0GNMH14盆地外36.493 1139.321 9
    CHBH14盆地内35.734 2140.823 0IBRH06盆地外36.880 9140.654 5
    GNMH05盆地内36.314 3139.184 7IBRH11盆地外36.370 1140.140 1
    GNMH11盆地内36.286 2138.921 0IBRH12盆地外36.836 9140.318 1
    IBRH07盆地内35.952 1140.330 1IBRH13盆地外36.795 5140.575 0
    IBRH10盆地内36.111 2139.988 9IBRH14盆地外36.692 2140.548 4
    IBRH17盆地内36.086 4140.314 0IBRH15盆地外36.556 6140.301 3
    IBRH18盆地内36.363 1140.619 8IBRH16盆地外36.640 5140.397 6
    IBRH19盆地内36.213 7140.089 3KNGH11盆地外35.404 0139.353 9
    IBRH20盆地内35.828 4140.732 3KNGH18盆地外35.643 7139.128 3
    KNGH10盆地内35.499 1139.519 5KNGH19盆地外35.417 3139.043 6
    SITH03盆地内35.899 0139.384 3KNGH20盆地外35.366 3139.126 0
    SITH04盆地内35.802 8139.535 3KNGH21盆地外35.462 8139.214 6
    SITH06盆地内36.113 1139.289 4KNGH22盆地外35.358 3139.091 0
    TCGH06盆地内36.445 8139.950 9NGNH17盆地外36.142 5138.550 4
    TCGH10盆地内36.857 8140.022 5NGNH19盆地外35.973 5138.584 5
    TCGH12盆地内36.695 9139.984 2NIGH19盆地外36.811 4138.784 9
    TCGH13盆地内36.734 2140.178 1SITH05盆地外36.150 9139.050 4
    TCGH15盆地内36.559 5139.863 7SITH07盆地外35.911 8139.148 5
    TCGH16盆地内36.548 0140.075 1SITH08盆地外36.027 4138.969 1
    CHBH11盆地外35.286 7140.152 9SITH09盆地外36.071 5139.099 3
    CHBH12盆地外35.344 5139.855 4SITH10盆地外35.996 4139.219 1
    CHBH15盆地外34.959 1139.788 5SITH11盆地外35.863 7139.272 6
    CHBH16盆地外35.138 4139.964 9TCGH07盆地外36.881 7139.453 4
    CHBH17盆地外35.171 4140.339 8TCGH08盆地外36.882 8139.645 9
    CHBH20盆地外35.088 2140.099 7TCGH09盆地外36.862 5139.836 4
    FKSH05盆地外37.254 4139.872 5TCGH11盆地外36.708 4139.769 4
    FKSH06盆地外37.172 3139.519 9TCGH14盆地外36.550 9139.615 4
    FKSH10盆地外37.161 6140.093 0TCGH17盆地外36.985 3139.692 2
    FKSH13盆地外36.995 1140.585 3TKYH12盆地外35.670 1139.265 0
    GNMH07盆地外36.699 8139.210 4TKYH13盆地外35.701 7139.127 5
    GNMH08盆地外36.491 7138.524 4YMNH11盆地外35.624 7138.977 7
    GNMH09盆地外36.621 2138.906 8YMNH14盆地外35.511 5138.967 5
    GNMH10盆地外36.235 6138.729 1
    下载: 导出CSV

    表  3  3类显著持时预测方程概述

    Table  3.   The summary of three significant duration prediction equations

    项目KS06方程AS16方程BRG21方程
    方程、基础数据
    库及适用范围
    $ \ln Ds = \ln ({D_{{\rm{source}}}} + {D_{{\rm{path}}}} + {D_{{\rm{site}}}}) $,
    NGA-West1水平向地震动数据库,
    MW为5~7.6级,Rrup为0~200 km
    $ \ln Ds = \ln ({D_{{\rm{source}}}} + {D_{{\rm{path}}}}) + {D_{{\rm{site}}}} $,NGA-West2水平向地震动数据库,MW为3~8级(其中走滑和逆断层为3~8级,正断层为3~7级),断层距Rrup为0~300 km,VS30为150~1 500 m/s,Z1.0为0~3 km $ \ln Ds = \ln ({D_{{\rm{source}}}} + {D_{{\rm{path}}}}) + {D_{{\rm{site}}}} $,日本KiK-net水平向地震动数据库,MW为4~7.5级,断层距Rrup为0~200 km,VS30为150~1 500 m/s,Z1.0为0~400 km
    震源项 $ \,{M_0} = {10^{1.5 M + 16.05\;}} $
    $ \,\Delta \sigma = \exp [{b_1} + {b_2}(M - {M^*})] $
    ${f_{\rm{c}}} = 4.9 \times {10^6} \times \beta {(\Delta \sigma /{M_0})^{1/3} }$
    ${D_{ {\rm{source} } } } = f_{\rm{c}}^{ - 1}$
    $ \,{M_0} = {10^{1.5 M + 16.05\;}} $
    $ \Delta \sigma = \left\{ \begin{gathered} \exp [{b_1} + {b_2}(M - {M^*})],\,\;M \leqslant {M_2} \\ \exp [{b_1} + {b_2}({M_2} - {M^*}) \\ + {b_3}(M - {M_2})],\,\,\,M > {M_2}\; \\ \end{gathered} \right. $
    ${f_{\rm{c}}} = 4.9 \times {10^6} \times \beta {(\Delta \sigma /{M_0})^{1/3} }$
    ${D_{\rm{source} } } = \left\{ \begin{gathered} \;\;\;1/{f_{\rm{c}}},\;\;M > {M_1} \\ \,\,\,\,\,\,\,\,{b_0},\;\;\;\,M \leqslant {M_1}\;\; \\ \end{gathered} \right.$
    $ \,{M_0} = {10^{1.5 M + 16.05\;}} $
    $ \Delta \sigma = \exp ({b_1} + {b_2}M) $
    ${f_{\rm{c}}} = 4.9 \times {10^6} \times \beta {(\Delta \sigma /{M_0})^{1/3} }$
    $ \ln {D_{{\rm{source}}}} = {10^{{m_1}(M - {m_2})}} + {m_3} $
    路径项 $ {D_{{\rm{path}}}} = {c_2}{R_{{\rm{rup}}}} $ $ {D_{{\rm{path}}}} = \left\{ \begin{gathered} {c_1}{R_{\rm{rup}}},\,{R_{\rm{rup}}} \leqslant {R_1} \\{c_1}{R_1} + {c_2}({R_{\rm{rup}}} - {R_1}),\;{R_1}\; < {R_{\rm{rup}}} \leqslant {R_2}\; \\ {c_1}{R_1} + {c_2}({R_2} - {R_1}) \\ + {c_3}({R_{\rm{rup}}} - {R_2}),\;{R_{\rm{rup}}}\; > {R_2} \\ \end{gathered} \right. $ ${D_{path} } = \left\{ \begin{gathered}{r_1} \cdot {R_{rup} },\;{R_{rup} } \leqslant {R_1} \\{r_1} \cdot [{R_1} + MSE({R_{rup} } - {R_1})],\;{R_{rup} } > {R_1}\end{gathered} \right.$
    $ MSE = \left\{ \begin{gathered}0,\; M \leqslant {M_1} \\\frac{ {M - {M_1} } }{ { {M_2} - {M_1} } },\;{M_1} < M \leqslant {M_2} \\1,\;M > {M_2} \\\end{gathered} \right. $
    场地项 二元场地模型:$ {D_{{\rm{site}}}} = {c_1}S $,S取值为
    0或1;VS30模型:$ {D_{{\rm{site}}}} = {c_4} + {c_5}{V_{{\rm{S}}30}} $;
    VS30与盆地深度的综合模型:$ {D_{{\rm{site}}}} = {c_4} + {c_5}{V_{{\rm{S}}30}} + {c_6} + {c_7}{Z_{1.5}} $
    ${D_{{\rm{site}}} } = \left\{ \begin{gathered} {c_4}\ln \left( {\frac{ { {V_{{\rm{S}}30} } } }{ { {V_{{\rm{ref}}} } } }} \right) + {F_{\delta {Z_1} } }\;\;\;{V_{{\rm{S}}30} } \leqslant {V_1} \\ {c_4}\ln \left( {\frac{ { {V_1} } }{ { {V_{{\rm{ref}}} } } }} \right) + {F_{\delta {Z_1} } }\;\;\;{V_{{\rm{S}}30} } > {V_1}\;\; \\ \end{gathered} \right.$
    ${F_{\delta {Z_1} } } = \left\{ \begin{gathered} \;{c_5}\delta {Z_1}\;\;\;\;\;\delta {Z_1} \leqslant \delta {Z_{1,{\rm{ref}}} } \\ {c_5}\delta {Z_{1,{\rm{ref}}} }\;\;\;\delta {Z_1} > \delta {Z_{1,{\rm{ref}}} } \\ \end{gathered} \right.$
    $ \delta {Z_1} = {Z_1} - {\mu _{Z1}} $
    $\begin{gathered} \ln ({\mu _{Z1} }) \\ = \frac{ { - 5.23} }{2}\ln \left( {\frac{ {V_{{\rm{S}}30}^2 + { {412.39}^2} } }{ { { {1360}^2} + { {412.39}^2} } } } \right) - \ln 1000 \\ \end{gathered}$
    $\begin{gathered} {D_{{\rm{site}}} } = {s_1}\ln \left( {\frac{ {\min ({V_{{\rm{S}}30} },600)} }{ {600} } } \right) \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {s_2}\min (\delta {Z_1},250)\, + {s_3} \\ \end{gathered}$
    ${Z_{1,P} } = \exp \left[ - \dfrac{ {5.23} }{2}\ln \left( {\dfrac{ {V_{ {\rm{S} }30}^2 + { {412}^2} } }{ { { {1360}^2} + { {412}^2} } } } \right) - 0.9 \right]$$ \delta {Z_1} = {Z_1} - {Z_{1,P}} $
    方程系数 $ {b_1},{b_2},{c_1},{c_2},{c_4},{c_5},{c_6},{c_7},{M^*} $系数参见Kempton等(2006)的研究 $ {b_0},{b_1},{b_2},{b_3},{c_1},{c_2},{c_3},{c_4},{c_5} $和
    ${M^*},{M_1},{M_2},{R_1},{R_2},{V_1},\delta {Z_{1,{\rm{ref}}} }$系数参见Afshari等(2016)的研究
    $ {b_1},{b_2},{m_1},{m_2},{r_1},{R_1},{s_1},{s_2},{s_3} $系数参见Bahrampouri等(2021)的研究
    注:为表述统一,3个持时预测方程中震源、路径、场地项符号与原文略有差异。M为震级,一般取矩震级MW,注意KS06方程中,当无可用的矩震级时,6级以上使用面波震级MS,6级以下使用地方震级MLRrup为断层距,为场点或台站到断层的最近距离,单位km;VS30为地面以下30 m平均剪切波速,单位m/s;z1为地面到剪切波速为1 km/s等值面的深度,单位km;Z1.5为地面到剪切波速为1.5 km/s等值面的深度,单位km;μZ1Z1,P均为根据VS30预测的Z1值,其在AS16方程中的单位为km,在BRG21方程中的单位为m; fc为拐角频率,单位Hz;Δσ为应力降指标,单位为bar;M0为地震矩,单位为dyne-cm;β为震源处剪切波速,单位km/s,本研究取3.2 km/s。
    下载: 导出CSV
  • 刘浪, 李小军, 彭小波, 2011. 汶川地震中强震动相对持时的空间变化特性研究. 地震学报, 33(6): 809—816 doi: 10.3969/j.issn.0253-3782.2011.06.011

    Liu L. , Li X. J. , Peng X. B. , 2011. Study on relative duration of strong motions during the great Wenchuan earthquake. Acta Seismologica Sinica, 33(6): 809—816. (in Chinese) doi: 10.3969/j.issn.0253-3782.2011.06.011
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010(2016年版) 建筑抗震设计规范. 北京: 中国建筑工业出版社, 19—21

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press, 19—21. (in Chinese)
    Abraham J. R. , Smerzini C. , Paolucci R. , et al. , 2016. Numerical study on basin-edge effects in the seismic response of the Gubbio valley, Central Italy. Bulletin of Earthquake Engineering, 14(6): 1437—1459. doi: 10.1007/s10518-016-9890-y
    Afshari K. , Stewart J. P. , 2016. Physically parameterized prediction equations for significant duration in active crustal regions. Earthquake Spectra, 32(4): 2057—2081. doi: 10.1193/063015EQS106M
    Aochi H. , Douglas J. , 2006. Testing the validity of simulated strong ground motion from the dynamic rupture of a finite fault, by using empirical equations. Bulletin of Earthquake Engineering, 4(3): 211—229. doi: 10.1007/s10518-006-0001-3
    Bahrampouri M. , Rodriguez-Marek A. , Green R. A. , 2021. Ground motion prediction equations for significant duration using the KiK-net database. Earthquake Spectra, 37(2): 903—920. doi: 10.1177/8755293020970971
    Baltay A. S. , Hanks T. C. , Abrahamson N. A. , 2017. Uncertainty, variability, and earthquake physics in ground-motion prediction equations. Bulletin of the Seismological Society of America, 107(4): 1754—1772.
    Bijelić N. , Lin T. , Deierlein G. G. , 2019. Quantification of the influence of deep basin effects on structural collapse using SCEC CyberShake earthquake ground motion simulations. Earthquake Spectra, 35(4): 1845—1864. doi: 10.1193/080418EQS197M
    Bommer J. J. , Martínez-Pereira A. , 1999. The effective duration of earthquake strong motion. Journal of Earthquake Engineering, 3(2): 127—172.
    Boore D. M. , 2003. Phase derivatives and simulation of strong ground motions. Bulletin of the Seismological Society of America, 93(3): 1132—1143. doi: 10.1785/0120020196
    Boore D. M. , Sisi A. A. , Akkar S. , 2012. Using pad-stripped acausally filtered strong-motion data. Bulletin of the Seismological Society of America, 102(2): 751—760. doi: 10.1785/0120110222
    Boore D. M. , Thompson E. M. , 2014. Path durations for use in the stochastic-method simulation of ground motions. Bulletin of the Seismological Society of America, 104(5): 2541—2552. doi: 10.1785/0120140058
    Hancock J. , Bommer J. J. , 2006. A state-of-knowledge review of the influence of strong-motion duration on structural damage. Earthquake Spectra, 22(3): 827—845. doi: 10.1193/1.2220576
    Kaklamanos J. , Baise L. G. , Boore D. M. , 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4): 1219—1235. doi: 10.1193/1.3650372
    Kallioras S. , Graziotti F. , Penna A. , et al. , 2022. Effects of vertical ground motions on the dynamic response of URM structures: comparative shake-table tests. Earthquake Engineering & Structural Dynamics, 51(2): 347—368.
    Kamarroudi S. H. , Hosseini M. , Hosseini K. , 2021. Influence of earthquake vertical excitations on Sloshing-Created P-Δ effect in elevated water Tanks: experimental Validation, numerical simulation and proposing a modification for Housner model. Engineering Structures, 246: 112995. doi: 10.1016/j.engstruct.2021.112995
    Kempton J. J. , Stewart J. P. , 2006. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthquake Spectra, 22(4): 985—1013. doi: 10.1193/1.2358175
    Kolli M. K. , Bora S. S. , 2021. On the use of duration in random vibration theory (RVT) based ground motion prediction: a comparative study. Bulletin of Earthquake Engineering, 19(4): 1687—1707. doi: 10.1007/s10518-021-01052-w
    Lee S. J. , Chen H. W. , Liu Q. Y. , et al. , 2008. Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bulletin of the Seismological Society of America, 98(1): 253—264. doi: 10.1785/0120070033
    Liang J. W. , Chaudhuri S. R. , Shinozuka M. , 2007. Simulation of nonstationary stochastic processes by spectral representation. Journal of Engineering Mechanics, 133(6): 616—627. doi: 10.1061/(ASCE)0733-9399(2007)133:6(616)
    Loghman V. , Khoshnoudian F. , Banazadeh M. , 2015. Effect of vertical component of earthquake on seismic responses of triple concave friction pendulum base-isolated structures. Journal of Vibration and Control, 21(11): 2099—2113. doi: 10.1177/1077546313503359
    Marafi N. A. , Eberhard M. O. , Berman J. W. , et al. , 2017. Effects of deep basins on structural collapse during large subduction earthquakes. Earthquake Spectra, 33(3): 963—997. doi: 10.1193/071916eqs114m
    Meimandi-Parizi A. , Mahdavian A. , Saffari H. , 2022. New equations for determination of shaping window in stochastic method of simulating ground motion. Journal of Earthquake Engineering, 26(7): 3506—3522. doi: 10.1080/13632469.2020.1809560
    Muscolino G. , Genovese F. , Biondi G. , et al. , 2021. Generation of fully non-stationary random processes consistent with target seismic accelerograms. Soil Dynamics and Earthquake Engineering, 141: 106467. doi: 10.1016/j.soildyn.2020.106467
    Olsen K. B. , Mayhew J. E. , 2010. Goodness-of-fit criteria for broadband synthetic seismograms, with application to the 2008 Mw 5.4 Chino Hills, California, earthquake. Seismological Research Letters, 81(5): 715—723. doi: 10.1785/gssrl.81.5.715
    Ruiz S. , Ojeda J. , Pastén C. , et al. , 2018. Stochastic strong-motion simulation in borehole and on surface for the 2011 Mw 9.0 Tohoku-Oki Megathrust Earthquake considering P, SV, and SH amplification transfer functions. Bulletin of the Seismological Society of America, 108(5 A): 2333—2346. doi: 10.1785/0120170342
    Semblat J. F., Kham M., Parara E., et al., 2005. Seismic wave amplification: basin geometry vs soil layering. Soil Dynamics and Earthquake Engineering, 25(7—10): 529—538.
    Somerville P. G. , Smith N. F. , Graves R. W. , et al. , 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1): 199—222. doi: 10.1785/gssrl.68.1.199
    Stewart J. P. , Blake T. F. , Hollingsworth R. A. , 2003. A screen analysis procedure for seismic slope stability. Earthquake Spectra, 19(3): 697—712. doi: 10.1193/1.1597877
    Trifunac M. D. , Brady A. G. , 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3): 581—626.
    Zhao J. X. , Zhou S. L. , Gao P. J. , et al. , 2015. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations. Bulletin of the Seismological Society of America, 105(5): 2750—2763. doi: 10.1785/0120150013
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  36
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回