• ISSN 1673-5722
  • CN 11-5429/P

基于动力学震源模型的三维沉积盆地直下型断层地震动模拟

巴振宁 慕少聪 赵靖轩 梁建文

巴振宁,慕少聪,赵靖轩,梁建文,2022. 基于动力学震源模型的三维沉积盆地直下型断层地震动模拟. 震灾防御技术,17(3):431−441. doi:10.11899/zzfy20220303. doi: 10.11899/zzfy20220303
引用本文: 巴振宁,慕少聪,赵靖轩,梁建文,2022. 基于动力学震源模型的三维沉积盆地直下型断层地震动模拟. 震灾防御技术,17(3):431−441. doi:10.11899/zzfy20220303. doi: 10.11899/zzfy20220303
Ba Zhenning, Mu Shaocong, Zhao Jingxuan, Liang Jianwen. Ground Motion Simulation of Three-dimensional Sedimentary Basin Based on Directly-beneath Fault Dynamic Source Model[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 431-441. doi: 10.11899/zzfy20220303
Citation: Ba Zhenning, Mu Shaocong, Zhao Jingxuan, Liang Jianwen. Ground Motion Simulation of Three-dimensional Sedimentary Basin Based on Directly-beneath Fault Dynamic Source Model[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 431-441. doi: 10.11899/zzfy20220303

基于动力学震源模型的三维沉积盆地直下型断层地震动模拟

doi: 10.11899/zzfy20220303
基金项目: 国家自然科学基金(52178495)
详细信息
    作者简介:

    巴振宁,男,生于1980年。博士,教授。主要从事大尺度复杂场地地震动模拟研究。E-mail:bazhenning_001@163.com

  • 2 https://github.com/geodynamics/specfem3d.git

Ground Motion Simulation of Three-dimensional Sedimentary Basin Based on Directly-beneath Fault Dynamic Source Model

  • 摘要: 沉积盆地与近断层地震共同作用会增加地震破坏的风险水平,尤其是盆地下方直下型断层发震情况。采用动力学震源模型刻画断层破裂发震过程,开展沉积盆地直下型断层谱元法地震动模拟研究,探讨不同断层面初始剪应力和成核区位置下三维沉积盆地地表响应规律。研究结果表明,断层面应力降对盆地地表地震动的影响显著,在断层面强度一定的情况下,随着初始剪应力的增大,即应力降增大,盆地地表峰值响应增大,原因在于应力降的改变影响了断层破裂释放能量,进而引起断层破裂速度改变,最终导致盆地地表响应发生变化;改变断层面成核区位置会对盆地内部地震动分布规律产生影响,当成核区位置从断层中间向断层左侧移动时,盆地左侧地震动逐渐减小,而右侧地震动逐渐增大,最终表现为盆地右侧地震动显著高于盆地左侧,原因在于改变成核区位置后,导致近断层地震动的方向性效应发生变化。
    1)  2 https://github.com/geodynamics/specfem3d.git
  • 图  1  沉积盆地整体物理模型

    Figure  1.  Overall physical model of sedimentary basin

    图  2  模型内部剖面网格划分示意

    Figure  2.  Section grid diagram inside the model

    图  3  滑动弱化示意

    Figure  3.  Slip-weakening friction law

    图  4  断层面观测点分布示意

    Figure  4.  Distribution of observation points on fault plane

    图  5  各观测点位错随时间变化曲线

    Figure  5.  The curves of displacement versus time corresponding to observation points

    图  6  各观测点对应加速度时程曲线

    Figure  6.  The time-histories of acceleration corresponding to observation points

    图  7  不同初始剪应力下地表P4观测点加速度时程曲线

    Figure  7.  The time-histories of acceleration at surface observation P4 with different initial shear stress

    图  8  不同初始剪应力下地表观测点PGA及其放大系数曲线

    Figure  8.  The curves of PGA and amplification factor at surface observations with different initial shear stress

    图  9  不同初始剪应力地表观测点P4加速度反应谱

    Figure  9.  The response spectrum of acceleration at surface observation P4 with different initial shear stress

    图  10  不同初始剪应力断层破裂时间等值线图

    Figure  10.  The contour of fault rupture time with different initial shear stress

    图  11  不同初始剪应力下地表速度波场快照图

    Figure  11.  The snapshots of velocity wavefield at surface with different initial shear stress

    图  12  不同成核区位置断层破裂时间等值线图

    Figure  12.  The contour of fault rupture time with different location of nucleation area

    图  13  不同成核区位置地表观测点PGA变化曲线

    Figure  13.  The curves of PGA at surface observations with different location of nucleation

    图  14  不同成核区位置地表速度波场快照

    Figure  14.  Snapshots of velocity wave field at surface with different location of nucleation area

    图  15  不同成核区位置地表水平峰值速度场及位移场分布

    Figure  15.  Distribution of peak ground velocity and displacement with different location of nucleation area

    表  1  计算模型介质参数

    Table  1.   Parameters of the simulation model

    介质密度/kg·m−3剪切波速vS/m·s−1压缩波速vP/m·s−1厚度/km深度/km
    基岩沉积盆地基岩沉积盆地基岩沉积盆地
    3 0002 4003 2003005 5005000.30.3
    3 0002 4003 2005005 5008000.30.6
    3 0002 4003 2008005 5001 5000.41.0
    3 0003 2005 50029.030.0
    下载: 导出CSV

    表  2  观测点位置

    Table  2.   Location of observation points

    观测点编号坐标(xyz
    P1(盆地外)(10 km,0.5 km,0)
    P2(盆地右边缘)(5 km,0.5 km,0)
    P3(盆地右1/4处)(2.5 km,0.5 km,0)
    P4(盆地中心)(0 km,0.5 km,0)
    P5(盆地左1/4处)(−2.5 km,0.5 km,0)
    P6(盆地左边缘)(−5 km,0.5 km,0)
    下载: 导出CSV

    表  3  断层面上摩擦和应力参数

    Table  3.   Friction and stress parameters on the fault

    断层参数成核区外成核区内
    静摩擦系数0.6750.675
    动摩擦系数0.4750.475
    临界滑动距离/m0.30.3
    初始剪应力/MPa66.081.6
    初始正应力/MPa120120
    下载: 导出CSV

    表  4  不同初始剪应力断层平均破裂速度

    Table  4.   Average rupture velocity of fault with different initial shear stress

    初始剪应力/MPa初始正应力/MPaS平均破裂速度vR/m·s−1剪切波速vS/m·s−1vR/vS
    641202.432 6203 2000.82
    651202.002 7613 2000.86
    661201.672 8773 2000.90
    671201.402 9663 2000.93
    701200.854 0113 2001.25
    711200.714 4803 2001.40
    下载: 导出CSV
  • 巴振宁, 赵靖轩, 吴孟桃等, 2020. 逆断层地震作用下三维沉积盆地地震动谱元法模拟. 地震科学进展, 50(10): 13—22 doi: 10.3969/j.issn.2096-7780.2020.10.002

    Ba Z. N. , Zhao J. X. , Wu M. T. , et al. , 2020. Spectral element method simulation of three-dimensional sedimentary basin under reverse-fault earthquakes. Progress in Earthquake Sciences, 50(10): 13—22. (in Chinese) doi: 10.3969/j.issn.2096-7780.2020.10.002
    杜晨晓, 谢富仁, 史保平, 2008. 隐伏和出露地表断层近断层地表运动特征的研究进展. 震灾防御技术, 3(2): 172—181 doi: 10.3969/j.issn.1673-5722.2008.02.008

    Du C. X. , Xie F. R. , Shi B. P. , 2008. The recent progress on strong ground motion near buried and surface earthquake faults. Technology for Earthquake Disaster Prevention, 3(2): 172—181. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.02.008
    韩天成, 于彦彦, 丁海平, 2020. 直下型断层的破裂速度对盆地地震效应的影响. 地震学报, 42(4): 457—470 doi: 10.11939/jass.20190177

    Han T. C. , Yu Y. Y. , Ding H. P. , 2020. Influence of rupture velocity of the directly-beneath fault on the basin seismic effect. Acta Seismologica Sinica, 42(4): 457—470. (in Chinese) doi: 10.11939/jass.20190177
    胡进军, 2009. 近断层地震动方向性效应及超剪切破裂研究. 哈尔滨: 中国地震局工程力学研究所.

    Hu J. J., 2009. Directivity effect of near-fault ground motion and super-shear rupture. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    刘启方, 金星, 丁海平, 2008. 复杂场地条件下震源参数对断层附近长周期地震动的影响. 地球物理学报, 51(1): 186—196 doi: 10.3321/j.issn:0001-5733.2008.01.023

    Liu Q. F. , Jin X. , Ding H. P. , 2008. Effects of the source parameters on long period near-fault ground motion in the case of complex site condition. Chinese Journal of Geophysics, 51(1): 186—196. (in Chinese) doi: 10.3321/j.issn:0001-5733.2008.01.023
    刘启方, 李雪强, 2011. 唐山大地震近场宽频带地震动模拟. 地震工程与工程振动, 31(5): 1—7 doi: 10.13197/j.eeev.2011.05.001

    Liu Q. F. , Li X. Q. , 2011. Broad-band strong motion simulation of the great Tangshan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 31(5): 1—7. (in Chinese) doi: 10.13197/j.eeev.2011.05.001
    刘中宪, 刘明珍, 韩建斌, 2017. 近断层沉积盆地强地震动谱元模拟. 世界地震工程, 33(4): 76—86

    Liu Z. X. , Liu M. Z. , Han J. B. , 2017. Spectral-element simulation of strong ground motion in the near-fault alluvial basin. World Earthquake Engineering, 33(4): 76—86. (in Chinese)
    吴永祺, 张海明, 2022. 断层几何形态和自发破裂的动力学参数对地震波场的影响. 地球物理学报, 65(3): 965—977 doi: 10.6038/cjg2022P0251

    Wu Y. Q. , Zhang H. M. , 2022. Effects of fault geometry and dynamic parameters of spontaneous rupture on seismic wave field. Chinese Journal of Geophysics, 65(3): 965—977. (in Chinese) doi: 10.6038/cjg2022P0251
    于海英, 王栋, 杨永强等, 2008. 汶川8.0级地震强震动特征初步分析. 震灾防御技术, 3(4): 321—336 doi: 10.3969/j.issn.1673-5722.2008.04.001

    Yu H. Y. , Wang D. , Yang Y. Q. , et al. , 2008. The preliminary analysis of strong ground motion characteristics from the MS8.0 Wenchuan earthquake, China. Technology for Earthquake Disaster Prevention, 3(4): 321—336. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.04.001
    余厚云, 2020. 川滇地区破坏性地震的震源动力学过程及强地面运动模拟与震害评估. 合肥: 中国科学技术大学.

    Yu H. Y., 2020. Rupture dynamics and strong ground motion simulation of destructive earthquakes in the Sichuan-Yunnan region. Hefei: University of Science and Technology of China. (in Chinese)
    张宇翔, 袁志祥, 2010. 汶川8.0级地震陕西灾区震害特征分析. 地震研究, 33(3): 329—335 doi: 10.3969/j.issn.1000-0666.2010.03.014

    Zhang Y. X. , Yuan Z. X. , 2010. Analysis on the characteristics of earthquake damages of the MS8.0 Wenchuan earthquake in the affected area in Shaanxi. Journal of Seismological Research, 33(3): 329—335. (in Chinese) doi: 10.3969/j.issn.1000-0666.2010.03.014
    朱刚, 高孟潭, 任雪梅, 2007. 中国城市直下型地震危险性分析研究. 中国地震, 23(2): 124—130 doi: 10.3969/j.issn.1001-4683.2007.02.002

    Zhu G. , Gao M. T. , Ren X. M. , 2007. Analysis of seismic hazard in the cities of China. Earthquake Research in China, 23(2): 124—130. (in Chinese) doi: 10.3969/j.issn.1001-4683.2007.02.002
    Anderson J. G. , Bodin P. , Brune J. N. , et al. , 1986. Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4768): 1043—1049. doi: 10.1126/science.233.4768.1043
    Andrews D. J. , 1976 a. Rupture propagation with finite stress in antiplane strain. Journal of Geophysical Research, 81(20): 3575—3582. doi: 10.1029/JB081i020p03575
    Andrews D. J. , 1976 b. Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32): 5679—5687. doi: 10.1029/JB081i032p05679
    Ida Y. , 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20): 3796—3805. doi: 10.1029/JB077i020p03796
    Pitarka A. , Irikura K. , Iwata T. , et al. , 1998. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake. Bulletin of the Seismological Society of America, 88(2): 428—440. doi: 10.1785/BSSA0880020428
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  125
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回