• ISSN 1673-5722
  • CN 11-5429/P

基于流固耦合统一计算框架的三维大规模海域场地地震反应分析−以东京湾为例

黄朝龙 陈少林 沈吉荣 张丽芳

黄朝龙,陈少林,沈吉荣,张丽芳,2022. 基于流固耦合统一计算框架的三维大规模海域场地地震反应分析−以东京湾为例. 震灾防御技术,17(3):420−430. doi:10.11899/zzfy20220302. doi: 10.11899/zzfy20220302
引用本文: 黄朝龙,陈少林,沈吉荣,张丽芳,2022. 基于流固耦合统一计算框架的三维大规模海域场地地震反应分析−以东京湾为例. 震灾防御技术,17(3):420−430. doi:10.11899/zzfy20220302. doi: 10.11899/zzfy20220302
Huang Chaolong, Chen Shaolin, Shen Jirong, Zhang Lifang. Three-dimensional Large-scale Marine Seismic Response Analysis Based on the Unified Computational Framework of Fluid-solid Interaction−A Case Study of Tokyo Bay[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 420-430. doi: 10.11899/zzfy20220302
Citation: Huang Chaolong, Chen Shaolin, Shen Jirong, Zhang Lifang. Three-dimensional Large-scale Marine Seismic Response Analysis Based on the Unified Computational Framework of Fluid-solid Interaction−A Case Study of Tokyo Bay[J]. Technology for Earthquake Disaster Prevention, 2022, 17(3): 420-430. doi: 10.11899/zzfy20220302

基于流固耦合统一计算框架的三维大规模海域场地地震反应分析−以东京湾为例

doi: 10.11899/zzfy20220302
基金项目: 国家自然科学基金(U2039209、51978337)
详细信息
    作者简介:

    黄朝龙,男,生于1998年。硕士研究生。主要从事桥梁抗震工作。E-mail:2573705537@qq.com

    通讯作者:

    陈少林,男,生于1974年。博士,教授,博士生导师。主要从事地震工程工作。E-mail:iemcsl@nuaa.edu.cn

Three-dimensional Large-scale Marine Seismic Response Analysis Based on the Unified Computational Framework of Fluid-solid Interaction−A Case Study of Tokyo Bay

  • 摘要: 海域场地地震响应分析是确定海洋工程结构抗震设计地震动输入的重要环节。然而,针对海水、饱和土、基岩之间的流固耦合分析,目前一般通过对3种介质方程进行离散,然后整体求解或分区耦合求解的方式进行,过程复杂而低效。因此,大规模海域场地地震反应分析仍是一个挑战性问题。本文基于流固耦合统一计算框架求解海域近场波动问题,采用透射边界模拟无限域,通过将海水和基岩视为孔隙率分别等于1和0的广义饱和多孔介质,使得海水、饱和土、基岩之间的相互耦合可在统一计算框架中实现,避免不同介质求解器之间的数据交换。采用集中质量显式有限元并行计算,不同进程之间采用MPI进行数据交换,提高计算效率;采用逐元技术,按单元类别存储单元刚度,大大节省了内存,便于大规模计算。通过自编程,输入界面高程数据和材料参数,实现建模-自由场-三维地震动模拟全流程自动化。以东京湾为例,使用该方法和程序在超级计算机上模拟SV波垂直入射时的地震响应,证实了该方法用于三维大规模海域地震波场模拟的高效性和可行性。
  • 图  1  介质关系示意图

    Figure  1.  Schematic diagram of media relations

    图  2  界面力示意图

    Figure  2.  Schematic diagram of interfacial force

    图  3  逐元并行FEM地震波场模拟流程图

    Figure  3.  Flow chart showing the processes of seismic wave modeling using element-by-element parallel FEM

    图  4  东京湾及周边地形示意图

    Figure  4.  Topography of the area around Tokyo bay

    图  5  Koketsu等(2009)确定的第一界面深度

    Figure  5.  The first interface depth determined by Koketsu et al.(2009

    图  6  输入脉冲

    Figure  6.  Input pulse

    图  7  观测点的位移、加速度时程曲线和加速度傅里叶谱

    Figure  7.  Displacement, acceleration time history curve and acceleration Fourier spectrum of observation points

    图  8  截面位移波场图

    Figure  8.  Displacement waveforms of cross sections

    图  9  x方向位移的波场快照

    Figure  9.  Snapshot of the wavefield with displacement in the x-direction

    表  1  东京湾材料参数(Koketsu 等, 2009

    Table  1.   Parameters of materials used in Tokyo bay (Koketsu et al., 2009

    材料孔隙率/βμ0ρs /kg·m−3Ρw/kg·m−3νG /GPaEw /GPaM /GPaαk0/μm2
    海水10010000.02002.252.2511
    基岩100185000.4370.666000
    基岩200208000.3952.080000
    下载: 导出CSV
  • 陈少林, 柯小飞, 张洪翔, 2019 a. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 51(2): 594—606

    Chen S. L. , Ke X. F. , Zhang H. X. , 2019 a. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 51(2): 594—606. (in Chinese)
    陈少林, 程书林, 柯小飞, 2019 b. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形. 力学学报, 51(5): 1517—1529

    Chen S. L. , Cheng S. L. , Ke X. F. , 2019 b. A unified computational framework for fluid-solid coupling in marine earthquake engineering: irregular interface case. Chinese Journal of Theoretical and Applied Mechanics, 51(5): 1517—1529. (in Chinese)
    杜修力, 2009. 工程波动理论与方法. 北京: 科学出版社, 215—216

    Du X. L. , 2009. Theories and methods of wave motion for engineering. Beijing: China Science Press, 215—216. (in Chinese)
    柯小飞, 陈少林, 张洪翔, 2019. P-SV波入射时海水-层状海床体系的自由场分析. 振动工程学报, 32(6): 966—976

    Ke X. F. , Chen S. L. , Zhang H. X. , 2019. Free-field analysis of seawater-seabed system for incident plane P-SV waves. Journal of Vibration Engineering, 32(6): 966—976. (in Chinese)
    李小军, 2006. 海域工程场地地震安全性评价的特殊问题. 震灾防御技术, 1(2): 97—104

    Li X. J. , 2006. Special problems on evaluation of seismic safety for offshore engineering site. Technology for Earthquake Disaster Prevention, 1(2): 97—104. (in Chinese)
    李小军, 陈苏, 任治坤等, 2020. 海域地震区划关键技术研究项目及研究进展. 地震科学进展, 50(1): 2—19

    Li X. J. , Chen S. , Ren Z. K. , et al. , 2020. Project plan and research progress on key technologies of seismic zoning in sea areas. Progress in Earthquake Sciences, 50(1): 2—19. (in Chinese)
    王笃国, 尤红兵, 张合等, 2021. 海域不同类别场地地震动参数变化规律研究. 震灾防御技术, 16(1): 116—122

    Wang D. G. , You H. B. , Zhang H. , et al. , 2021. Study on the change of earthquake ground motion parameters for different classification sites of ocean areas. Technology for Earthquake Disaster Prevention, 16(1): 116—122. (in Chinese)
    朱镜清, 1988. 地震作用下海水与海床土的耦合运动. 地震工程与工程振动, 8(2): 37—43

    Zhu J. Q. , 1988. Coupled motion between sea water and sea bed-soil under earthquake action. Earthquake Engineering and Engineering Vibration, 8(2): 37—43. (in Chinese)
    Bao X. , Liu J. B. , Chen S. , et al. , 2022. Seismic analysis of the reef-seawater system: comparison between 3 D and 2 D models. Journal of Earthquake Engineering, 26(6): 3109—3122. doi: 10.1080/13632469.2020.1785976
    Biot M. A. , 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. The Journal of the Acoustical Society of America, 28(2): 168—191.
    Biot M. A. , 1962. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4): 1482—1498. doi: 10.1063/1.1728759
    Brekhovskikh L. M., 1980. Waves in layered media. 2 nd ed. New York: Academic Press.
    Deresiewicz H. , Rice J. T. , 1964. The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface. Bulletin of the Seismological Society of America, 54(1): 409—416. doi: 10.1785/BSSA0540010409
    Dhakal Y. P., Aoi S., Kunugi T., et al., 2017. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan. Earth, Planets and Space, 69(1): 29.
    Hu J. J. , Tan J. Y. , Zhao J. X. , 2020. New GMPEs for the Sagami bay region in Japan for moderate magnitude events with emphasis on differences on site amplifications at the seafloor and land seismic stations of K-NET. Bulletin of the Seismological Society of America, 110(5): 2577—2597. doi: 10.1785/0120190305
    Ichimura T. , Hori M. , Kuwamoto H. , 2007. Earthquake motion simulation with multiscale finite-element analysis on hybrid grid. Bulletin of the Seismological Society of America, 97(4): 1133—1143. doi: 10.1785/0120060175
    Koketsu K., Miyake H., Afnimar, et al., 2009. A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan. Tectonophysics, 472(1—4): 290—300.
    Li C. , Hao H. , Li H. N. , et al. , 2017. Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites. Journal of Earthquake Engineering, 21(3): 359—383. doi: 10.1080/13632469.2016.1172375
    Liao Z. P. , Wong H. L. , 1984. A transmitting boundary for the numerical simulation of elastic wave propagation. International Journal of Soil Dynamics and Earthquake Engineering, 3(4): 174—183. doi: 10.1016/0261-7277(84)90033-0
    Link G., Kaltenbacher M., Breuer M., et al., 2009. A 2 D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics and Engineering, 198(41—44): 3321—3334.
    Liu S. L. , Yang D. H. , Dong X. P. , et al. , 2017. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling. Solid Earth, 8(5): 969—986. doi: 10.5194/se-8-969-2017
    Maeda T., Takemura S., Furumura T., 2017. OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3 D heterogeneous viscoelastic media. Earth, Planets and Space, 69(1): 102.
    Moczo P. , Kristek J. , Halada L. , 2000. 3 D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion. Bulletin of the Seismological Society of America, 90(3): 587—603. doi: 10.1785/0119990119
    Nakamura T. , Takenaka H. , Okamoto T. , et al. , 2012. FDM Simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay earthquake: effects of ocean-bottom topography and seawater layer. Bulletin of the Seismological Society of America, 102(6): 2420—2435. doi: 10.1785/0120110356
    Oba A. , Furumura T. , Maeda T. , 2020. Data assimilation‐based early forecasting of long‐period ground motions for large earthquakes along the Nankai trough. Journal of Geophysical Research: Solid Earth, 125(6): e2019 JB019047.
    Okamoto T. , Takenaka H. , 1999. A reflection/transmission matrix formulation for seismoacoustic scattering by an irregular fluid–solid interface. Geophysical Journal International, 139(2): 531—546. doi: 10.1046/j.1365-246x.1999.00959.x
    Okamoto T., Takenaka H., Nakamura T., et al., 2010. Accelerating large-scale simulation of seismic wave propagation by multi-GPUs and three-dimensional domain decomposition. Earth, Planets and Space, 62(12): 939—942.
    Okamoto T., Takenaka H., Nakamura T., et al., 2017. FDM simulation of earthquakes off western Kyushu, Japan, using a land-ocean unified 3 D structure model. Earth, Planets and Space, 69(1): 88.
    Takemura S. , Kubo H. , Tonegawa T. , et al. , 2019. Modeling of long-period ground motions in the Nankai subduction zone: model simulation using the accretionary prism derived from oceanfloor local S-wave velocity structures. Pure and Applied Geophysics, 176(2): 627—647. doi: 10.1007/s00024-018-2013-8
    Takemura S. , Okuwaki R. , Kubota T. , et al. , 2020. Centroid moment tensor inversions of offshore earthquakes using a three-dimensional velocity structure model: slip distributions on the plate boundary along the Nankai trough. Geophysical Journal International, 222(2): 1109—1125. doi: 10.1093/gji/ggaa238
    Takemura S., Yoshimoto K., Shiomi K., 2021. Long-period ground motion simulation using centroid moment tensor inversion solutions based on the regional three-dimensional model in the Kanto Region, Japan. Earth, Planets and Space, 73(1): 15.
    Wang X. , Zhan Z. W. , 2020. Moving from 1-D to 3-D velocity model: automated waveform-based earthquake moment tensor inversion in the Los Angeles region. Geophysical Journal International, 220(1): 218—234. doi: 10.1093/gji/ggz435
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  56
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回