• ISSN 1673-5722
  • CN 11-5429/P

板钉连接CFST柱-RC梁节点梁端塑性铰区受力性能数值模拟

马华 阚吉平 赵玉坤 李振宝

马华,阚吉平,赵玉坤,李振宝,2022. 板钉连接CFST柱-RC梁节点梁端塑性铰区受力性能数值模拟. 震灾防御技术,17(2):381−391. doi:10.11899/zzfy20220218. doi: 10.11899/zzfy20220218
引用本文: 马华,阚吉平,赵玉坤,李振宝,2022. 板钉连接CFST柱-RC梁节点梁端塑性铰区受力性能数值模拟. 震灾防御技术,17(2):381−391. doi:10.11899/zzfy20220218. doi: 10.11899/zzfy20220218
Ma Hua, Kan Jiping, Zhao Yukun, Li Zhenbao. Numerical Analysis of the Mechanical Performance of the CFST Column-RC Beam Joint Connected by the Steel Plate-Stud at the Plastic Hinge Zone of the Beam End[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 381-391. doi: 10.11899/zzfy20220218
Citation: Ma Hua, Kan Jiping, Zhao Yukun, Li Zhenbao. Numerical Analysis of the Mechanical Performance of the CFST Column-RC Beam Joint Connected by the Steel Plate-Stud at the Plastic Hinge Zone of the Beam End[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 381-391. doi: 10.11899/zzfy20220218

板钉连接CFST柱-RC梁节点梁端塑性铰区受力性能数值模拟

doi: 10.11899/zzfy20220218
基金项目: 国家自然科学基金(51978014)
详细信息
    作者简介:

    马华,女,生于1962生。博士,教授,硕士生导师。主要从事工程结构抗震研究。E-mail:mahua@bjut.edu.cn

    通讯作者:

    李振宝,男,生于1962年。博士,教授,博士生导师。主要从事工程结构抗震研究。E-mail:lizb@bjut.edu.cn

Numerical Analysis of the Mechanical Performance of the CFST Column-RC Beam Joint Connected by the Steel Plate-Stud at the Plastic Hinge Zone of the Beam End

  • 摘要: 建立竖板-栓钉连接钢管混凝土(CFST)柱-钢筋混凝土(RC)梁节点试件(SSJD)拟静力加载试验有限元模型,并在节点损伤情况、梁端荷载-位移曲线等数值模拟结果与试验结果吻合较好的基础上,进一步开展了RC梁混凝土强度、配筋率ρs和连接竖板长度Lb及界面连接情况等对CFST柱-RC梁节点梁端塑性铰区域力学性能的影响。研究结果表明,RC梁混凝土强度对试件SSJD塑性铰区域受力性能的影响较小;适筋范围内RC梁配筋率增加可适当提高试件SSJD承载力和延性;随着连接竖板长度的增加,梁端塑性铰区域外移,梁破坏荷载增大;本研究给出的RC梁与CFST柱之间的界面抗剪承载力模拟值与计算值吻合较好,可用于界面抗剪设计。
  • 图  1  试件SSJD(单位:毫米)

    Figure  1.  The size of SSJD specimen(Unit:mm)

    图  2  试件SSJD有限元模型

    Figure  2.  Finite Element Model of SSJD Specimen

    图  3  试件SSJD等效塑性拉、压应变云图及损伤情况

    Figure  3.  Equivalent plastic tensile and compressive strain contours and damage of SSJD specimens

    图  4  梁端荷载-位移曲线模拟结果和试验结果

    Figure  4.  Beam end load-displacement simulation and test result curves

    图  5  RC梁混凝土强度对骨架曲线、峰值荷载和位移延性系数的影响

    Figure  5.  Influence of concrete strength of RC beam on skeleton curve, peak load and displacement ductility coefficient

    图  6  RC梁混凝土强度对塑性铰区域的影响

    Figure  6.  Influence of concrete strength of RC beam on plastic hinge region

    图  7  RC梁配筋率对骨架曲线、峰值荷载和位移延性系数的影响

    Figure  7.  Influence of reinforcement ratio of RC beam on skeleton curve, peak load and displacement ductility coefficient

    图  8  RC梁配筋率对塑性铰区域的影响

    Figure  8.  Influence of reinforcement ratio of RC beam on plastic hinge region

    图  9  连接竖板长度对骨架曲线、峰值荷载和位移延性系数的影响

    Figure  9.  Influence of connecting riser length on skeleton curve, peak load and displacement ductility factor

    图  10  连接竖板长度对塑性铰区域的影响

    Figure  10.  Influence of connecting riser length on plastic hinge area

    图  11  不同连接情况荷载-位移曲线

    Figure  11.  Load-displacement curve of different connections

    表  1  混凝土力学性能参数

    Table  1.   Mechanical property parameters of concrete

    混凝土强度等级弹性模量/MPa抗压强度/MPa
    C353.34×10429.2
    C503.78×10452.1
    下载: 导出CSV

    表  2  钢材力学性能参数

    Table  2.   Mechanical property parameters of steel

    钢材直径或厚度/mm级别弹性模量/MPa屈服强度/MPa极限强度/MPa
    钢管10Q3452.0×105423569
    钢板6Q3452.0×105409539
    钢筋10HRB4001.8×105413607
    20HRB4002.0×105430559
    25HRB4002.0×105436608
    栓钉13ML152.06×105339456
    16ML152.06×105340457
    下载: 导出CSV

    表  3  分析参数设置与主要结果

    Table  3.   Analysis parameter settings and main results

    有限元
    模型
    混凝土
    强度等级
    梁截面
    纵筋
    配筋率
    ρs/%
    连接竖板长度
    $ {L_{\rm{b}}} $/mm
    连接情况剪跨比峰值荷载
    Pu/kN
    位移延性系数
    μ
    SSJD-0.5HC35上侧325+220、下侧4251.07/1.00350试验模型4.00279.595.77
    SSJD-C25C25上侧325+220、下侧4251.07/1.00350试验模型4.00284.735.84
    SSJD-C45C45上侧325+220、下侧4251.07/1.00350试验模型4.00276.885.50
    SSJD-C50C50上侧325+220、下侧4251.07/1.00350试验模型4.00278.405.30
    SSJD-0.68%ρsC35上侧320+216、下侧4200.68/0.64350试验模型4.00185.884.64
    SSJD-0.84%ρsC35上侧322+218、下侧4220.84/0.77350试验模型4.00221.984.97
    SSJD-1.32%ρsC35上侧328+222、下侧4281.32/1.25350试验模型4.00346.366.89
    SSJD-1.57%ρsC35上侧330+225、下侧4301.57/1.43350试验模型4.00409.897.80
    SSJD-0.25HC35上侧325+220、下侧4251.07/1.00175试验模型4.00262.836.20
    SSJD-0.75HC35上侧325+220、下侧4251.07/1.00525试验模型4.00305.116.92
    SSJD-HC35上侧325+220、下侧4251.07/1.00700试验模型4.00334.377.54
    SSJD-SC35上侧325+220、下侧4251.07/1.000仅设置管壁栓钉0.29597.88
    SSJD-VC35上侧325+220、下侧4251.07/1.00350仅设置竖板0.29843.86
    SSJD-SVC35上侧325+220、下侧4251.07/1.00350试验模型0.291 217.57
    SSJD-RCC35上侧325+220、下侧4251.07/1.00350试验模型1.501 049.34
    下载: 导出CSV

    表  4  界面抗剪承载力模拟值与计算值

    Table  4.   Simulated and calculated interface shear capacity

    有限元模型界面抗剪承载力模拟值VF/kN界面抗剪承载力计算值VC/kN模拟值/计算值
    SSJD-S597.88546.891.09
    SSJD-V843.86858.900.98
    SSJD-SV1 217.571 301.420.94
    SSJD-RC1 049.34981.921.07
    下载: 导出CSV
  • [1] 冯帅克, 郭正兴, 倪路瑶等, 2021. 钢管混凝土柱-混合梁节点抗震性能试验研究. 浙江大学学报(工学版), 55(8): 1464—1472

    Feng S. K. , Guo Z. X. , Ni L. Y. , et al. , 2021. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams. Journal of Zhejiang University (Engineering Science), 55(8): 1464—1472. (in Chinese)
    [2] 李振宝, 杨成苗, 刘春阳, 2019. 梁端局部无粘结钢筋混凝土梁抗弯承载力研究. 震灾防御技术, 14(3): 477—488 doi: 10.11899/zzfy20190302

    Li Z. B. , Yang C. M. , Liu C. Y. , 2019. Study on the flexural bearing capacity of partially unbonded reinforced concrete beams at beam ends. Technology for Earthquake Disaster Prevention, 14(3): 477—488. (in Chinese) doi: 10.11899/zzfy20190302
    [3] 刘威, 2005. 钢管混凝土局部受压时的工作机理研究. 福州: 福州大学.

    Liu W. , 2005. Research on mechanism of concrete-filled steel tubes subjected to local compression. Fuzhou: Fuzhou University. (in Chinese)
    [4] 马哲昊, 张纪刚, 梁海志等, 2021. 装配式人工消能塑性铰节点抗震性能试验研究. 建筑结构学报, 42(7): 154—163

    Ma Z. H. , Zhang J. G. , Liang H. Z. , et al. , 2021. Experimental study on seismic performance of prefabricated joint based on artificial dissipative plastic hinge. Journal of Building Structures, 42(7): 154—163. (in Chinese)
    [5] 聂建国, 秦凯, 刘嵘, 2006. 方钢管混凝土柱与钢-混凝土组合梁连接的内隔板式节点的抗震性能试验研究. 建筑结构学报, 27(4): 1—9 doi: 10.3321/j.issn:1000-6869.2006.04.001

    Nie J. G. , Qin K. , Liu R. , 2006. Experimental study on seismic behavior of connections composed of concrete-filled square steel tubular columns and steel-concrete composite beams with interior diaphragms. Journal of Building Structures, 27(4): 1—9. (in Chinese) doi: 10.3321/j.issn:1000-6869.2006.04.001
    [6] 时建新, 邹昀, 王城泉等, 2021. 外包波纹钢-混凝土组合梁与波纹钢-钢管混凝土柱节点抗震性能研究. 实验力学, 36(3): 367—377 doi: 10.7520/1001-4888-20-134

    Shi J. X. , Zou Y. , Wang C. Q. , et al. , 2021. Study on seismic behaviours of corrugated steel web-encased concrete composite beam to corrugated plate-square concrete filled steel tubular column joint. Journal of Experimental Mechanics, 36(3): 367—377. (in Chinese) doi: 10.7520/1001-4888-20-134
    [7] 宋毛毛, 2013. 基于ABAQUS的钢-混凝土组合梁钢框架抗震性能研究. 哈尔滨: 哈尔滨工业大学.

    Song M. M. , 2013. Study on the seismic behavior of steel frame with steel-concrete composite beams based on ABAQUS. Harbin: Harbin Institute of Technology. (in Chinese)
    [8] 苏佶智, 邢国华, 马煜东等, 2018. 反复荷载作用下锈蚀钢筋混凝土柱力学性能研究. 震灾防御技术, 13(3): 512—523 doi: 10.11899/zzfy20180303

    Su J. Z. , Xing G. H. , Ma Y. D. , et al. , 2018. Study on mechanical properties of corroded reinforced concrete frame columns under cyclic load. Technology for Earthquake Disaster Prevention, 13(3): 512—523. (in Chinese) doi: 10.11899/zzfy20180303
    [9] 王燕, 李庆刚, 董建莉等, 2016. 梁端翼缘削弱型节点空间钢框架抗震性能试验研究. 建筑结构学报, 37(S1): 192—200

    Wang Y. , Li Q. G. , Dong J. L. , et al. , 2016. Experimental study on seismic behavior of space steel frame with reduced beam section connections. Journal of Building Structures, 37(S1): 192—200. (in Chinese)
    [10] 王作虎, 杜修力, 邓宗才, 2010. 不同加固方式对混凝土梁柱节点抗震性能的影响. 震灾防御技术, 5(1): 1—8 doi: 10.3969/j.issn.1673-5722.2010.01.001

    Wang Z. H. , Du X. L. , Deng Z. C. , 2010. An experimental study on the seismic behavior of beam-column joints strengthened with AFRP sheets. Technology for Earthquake Disaster Prevention, 5(1): 1—8. (in Chinese) doi: 10.3969/j.issn.1673-5722.2010.01.001
    [11] 尧国皇, 陈宜言, 林松, 2010. 新型钢管混凝土柱-钢筋混凝土梁节点的有限元分析. 特种结构, 27(6): 34—38 doi: 10.3969/j.issn.1001-3598.2010.06.009

    Yao G. H. , Chen Y. Y. , Lin S. , 2010. FEM analysis on seismic behavior of a new-type joint of CFST column-RC beam. Special Structures, 27(6): 34—38. (in Chinese) doi: 10.3969/j.issn.1001-3598.2010.06.009
    [12] 姚玉生, 1981. 抗震节点中梁端塑性铰位置的研究与探讨. 建筑结构, 10(5): 5—11

    Yao Y. S. , 1981. Research and discussion on the position of the plastic hinge at the beam end in the seismic joint. Building Structure, 10(5): 5—11. (in Chinese)
    [13] 中华人民共和国住房和城乡建设部, 2015. GB 50010—2010(2015年版) 混凝土结构设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2011. GB 50010-2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese)
    [14] 中华人民共和国住房和城乡建设部, 2014. GB 50917-2013 钢-混凝土组合桥梁设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2014. GB 50917-2013 Code for design of steel and concrete composite bridges. Beijing: China Architecture & Building Press. (in Chinese)
    [15] 中华人民共和国住房和城乡建设部, 2015. JGJ/T 101-2015 建筑抗震试验规程. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. JGJ/T 101-2015 Specification for seismic test of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    [16] Li Z. B. , Liu Y. S. , Ma H. , et al. , 2019. Seismic performance of full-scale joints composed by concrete-filled steel tube column and reinforced concrete beam with steel plate-stud connections. Advances in Civil Engineering, 2019: 5476909.
    [17] Liu Q. , Chen S. H. , Lin W. , et al. , 2019. Experimental study on novel energy-dissipating prefabricated beam-column joints. Advances in Civil Engineering, 2019: 8151087.
    [18] Park C. H. , Lee C. H. , Park H. G. , et al. , 2011. Cyclic seismic testing of cruciform concrete-filled U-shape steel beam-to-H column composite connections. Journal of Korean Society of Steel Construction, 23(4): 503—514.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  37
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回