• ISSN 1673-5722
  • CN 11-5429/P

MEMS型加速度传感器在超高层建筑振动监测中的性能对比测试

胡荣攀 汪羽凡 王立新 林健富 刘军香 赵贤任

白建方, 马立龙. Rayleigh波场的数值模拟及其应用[J]. 震灾防御技术, 2019, 14(2): 328-340. doi: 10.11899/zzfy20190207
引用本文: 胡荣攀,汪羽凡,王立新,林健富,刘军香,赵贤任,2022. MEMS型加速度传感器在超高层建筑振动监测中的性能对比测试. 震灾防御技术,17(2):348−359. doi:10.11899/zzfy20220215. doi: 10.11899/zzfy20220215
Bai Jianfang, Ma Lilong. Numerical Modeling Techniques of Rayleigh Wave Field and Its Application[J]. Technology for Earthquake Disaster Prevention, 2019, 14(2): 328-340. doi: 10.11899/zzfy20190207
Citation: Hu Rongpan, Wang Yufan, Wang Lixin, Lin Jianfu, Liu Junxiang, Zhao Xianren. Performance Test and Comparison of MEMS Accelerometers for Vibration Monitoring of High-Rise Building[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 348-359. doi: 10.11899/zzfy20220215

MEMS型加速度传感器在超高层建筑振动监测中的性能对比测试

doi: 10.11899/zzfy20220215
基金项目: 广东省防震减灾科技协同创新中心项目(2018B020207011);国家重点研发计划项目(2019YFC1511005-5,2019YFB2102704);中国地震局地震科技星火计划攻关项目(XH204702)
详细信息
    作者简介:

    胡荣攀,男,生于1990年。博士,助理研究员。主要从事地震工程及结构健康监测方面的研究。E-mail:rongpan.hu@outlook.com

    通讯作者:

    林健富,男,生于1985年。博士,副研究员。主要从事结构健康监测方面的研究。E-mail:linjianf@hotmail.com

Performance Test and Comparison of MEMS Accelerometers for Vibration Monitoring of High-Rise Building

  • 摘要: 为开展MEMS型加速度传感器在超高层建筑振动监测应用中的性能对比测试,选取4种不同类型MEMS型加速度传感器与G1B型力平衡式加速度传感器,将其安装在地王大厦相同测点,对MEMS型、G1B型加速度传感器记录的结构环境振动数据进行时程、频谱和模态频率对比分析,并对其记录的结构地震响应进行时域及频域对比。研究结果表明,不同类型MEMS型加速度传感器仪器噪声均大于G1B型加速度传感器,其中MEMS-I型加速度传感器噪声水平相对较小,与G1B型加速度传感器模态频率识别结果及地震响应监测数据吻合较好,验证了MEMS-I型加速度传感器可较准确地记录到结构强振动响应,适用于超高层建筑日常结构振动监测。
  • 关于场地地震反应的分析已有大量研究成果,研究表明土壤在地震作用下会表现出材料非线性效应ADDIN EN.CITE.DATA(Joyner等,1975Huang等,2001Arslan等,2006Hosseini等,2012)。等效线性化方法ADDIN EN.CITE.DATA(Schnabel等,1972Idriss等,1992Bardet等,2000王笃国等,2016)是一种频域方法,通过在不同土体应变条件下选择等效阻尼比和剪切模量,将非线性问题转化为线性问题。当采用材料非线性本构模型描述土体非线性时,需采用时间积分算法求解非线性动力有限元方程。时间积分算法可分为隐式方法和显式方法。隐式算法每时刻需求解线性代数方程组,计算效率相对较低,如Wilson-θ法和Newmark法等。显式算法无需求解线性代数方程组,适合于强非线性和自由度数目较大的问题。研究者已提出多种显式时间积分算法ADDIN EN.CITE.DATA(Chung等,1994王进廷等,2002Belytschko等,2014)。作者近期提出一种二阶精度的单步显式算法,该算法适合变时步问题,在线弹性范围内稳定性较好。本文将该算法推广至求解非线性动力有限元方程中,并将其应用于地震波垂直入射时非线性地震反应分析。

    设已知非线性体系第${t_i}$时步的受力状态,求解第${t_{i + 1}}$时步的非线性结构动力学方程:

    $${\boldsymbol{M}}{{\boldsymbol{\ddot u}}_{i + 1}}{\boldsymbol{ + C}}{{\boldsymbol{\dot u}}_{i + 1}} + {\boldsymbol{f}}_{i + 1}^S{\boldsymbol{ = }}{{\boldsymbol{f}}_{i + 1}}$$ (1)

    式中MC、${{\boldsymbol{f}}^S}$和${\boldsymbol{f}}$分别表示非线性体系的质量矩阵、阻尼矩阵、内力向量和外荷载向量;u表示位移,点号对时间t求导,i+1表示第${t_{i + 1}}$时刻。第i+1时刻时间步长为:

    $${\boldsymbol{\Delta }}{t_i} = {t_{i + 1}} - {t_i}$$ (2)

    文献显式方法求解非线性方程(1)的过程如下,第i+1时刻位移${{\boldsymbol{u}}_{i + 1}}$为:

    $${{\boldsymbol{u}}_{i + 1}} = {{\boldsymbol{u}}_i} + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}{{\boldsymbol{\dot u}}_i} + \frac{{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}^2}}{2}{{\boldsymbol{\ddot u}}_i}$$ (3)

    i+1时刻位移增量$\mathit{\Delta }{{\boldsymbol{u}}_i}$、内力增量$\mathit{\Delta }{\boldsymbol{f}}_i^S$和内力全量${\boldsymbol{f}}_{i + 1}^S$分别为:

    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{{\boldsymbol{u}}_i} = {{\boldsymbol{u}}_{i + 1}} - {{\boldsymbol{u}}_i}$$ (4)
    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{f}}_i^S = {\boldsymbol{f}}(\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{{\boldsymbol{u}}_i})$$ (5)
    $${\boldsymbol{f}}_{i + 1}^S = {\boldsymbol{f}}_i^S + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{f}}_i^S$$ (6)

    i+1时刻预估速度${{\boldsymbol{\dot {\tilde u}}}_{i + 1}}$、预估加速度${{\boldsymbol{\ddot {\tilde u}}}_{i + 1}}$、速度${{\boldsymbol{\dot u}}_{i + 1}}$和加速度${{\boldsymbol{\ddot u}}_{i + 1}}$分别为

    $${{\boldsymbol{\dot {\tilde u}}}_{i + 1}} = {{\boldsymbol{\dot u}}_i} + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}{{\boldsymbol{\ddot u}}_i}$$ (7)
    $${{\boldsymbol{\ddot {\tilde u}}}_{i + 1}} = {{\boldsymbol{M}}^{ - 1}}({{\boldsymbol{f}}_{i + 1}} - {\boldsymbol{C\dot {\tilde u}}}_{i + 1}^{} - {\boldsymbol{f}}_{i + 1}^S)$$ (8)
    $${{\boldsymbol{\dot u}}_{i + 1}} = {{\boldsymbol{\dot u}}_i} + \frac{{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}}}{2}({{\boldsymbol{\ddot u}}_i} + {{\boldsymbol{\ddot {\tilde u}}}_{i + 1}})$$ (9)
    $${{\boldsymbol{\ddot u}}_{i + 1}} = {{\boldsymbol{M}}^{ - 1}}({{\boldsymbol{f}}_{i + 1}} - {\boldsymbol{C\dot u}}_{i + 1}^{} - {\boldsymbol{f}}_{i + 1}^S)$$ (10)

    式(3)—式(10)为求解式(1)的显式算法。算法中需由位移增量计算内力增量,目前常用的应力计算方法包括向前欧拉法、向后欧拉法和完全隐式计算法等ADDIN EN.CITE.DATA(Sloan等,19922001Ahadi等,2003)。下面给出式(5)由位移增量计算内力增量的过程,即一种带误差控制的修正欧拉算法。

    对于每个有限单元,由位移增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{u}}_i^e$计算应变增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e$的表达式为:

    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e = {{\boldsymbol{B}}^e}\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{u}}_i^e$$ (11)

    式中Be为应变矩阵。将ti时刻单元应变增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e$赋值给子步应变增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$,ti时刻单元应力${\boldsymbol{ \pmb{\mathit{ σ}} }}_i^e$赋值给${\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e$,初始化子步应变增量和应力状态分别为:

    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e \leftarrow \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e$$ (12)
    $${\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e \leftarrow {\boldsymbol{ \pmb{\mathit{ σ}} }}_i^e$$ (13)

    每个子步中应力增量计算思路见图 1,具体计算公式如下:

    $${\boldsymbol{D}}_1^e = {\boldsymbol{D}}({\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e)$$ (14)
    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e = {\boldsymbol{D}}_1^e\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (15)
    $${\boldsymbol{D}}_2^e = {\boldsymbol{D}}({\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e)$$ (16)
    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_2^e = {\boldsymbol{D}}_2^e\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (17)
    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_s^e = \frac{{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_2^e}}{2}$$ (18)
    图 1  修正欧拉算法计算应力增量
    Figure 1.  Modified Euler algorithm to calculate stress increment

    式中${{\boldsymbol{D}}^e}$为单元应力-应变关系矩阵。判断每个子步中应力增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{{\boldsymbol{ \pmb{\mathit{ σ}} }}_s}$是否符合精度要求的误差判断式为:

    $${e_r} = \frac{{\left\| {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e - \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_2^e} \right\|}}{{\left\| {{\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_s^e} \right\|}}$$ (19)

    判断误差er是否小于预先给定的判断值st,条件不满足时,缩小子步应变增量为:

    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e \leftarrow A\sqrt {{{{s_t}} \mathord{\left/ {\vphantom {{{s_t}} {{e_r}}}} \right. } {{e_r}}}} \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (20)

    式中A为误差峰值系数。采用缩小的子步应变增量重新进行式(14)—式(19)的计算与判断,循环直至满足精度要求,更新剩余应变增量和应力状态分别为:

    $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e \leftarrow \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e - \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (21)
    $${\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e \leftarrow {\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_s^e$$ (22)

    利用更新剩余应变增量和应力状态循环执行式(14)—式(20),直至剩余应变增量小于等于零结束。

    利用求得的第i+1时刻单元应力可得到单元应力增量和内力增量分别为:

    $$ \Delta \boldsymbol{\sigma }_i^e = \boldsymbol{\sigma }_{i + 1}^e - \boldsymbol{\sigma }_i^e $$ (23)
    $$ \Delta {\boldsymbol{f}}_i^S{\rm{ = }}\sum\limits_e {\int {{{\boldsymbol{B}}^{e{\rm{T}}}}\boldsymbol{\Delta }{\boldsymbol{\sigma }}_i^e{\bf{d}}A} } $$ (24)

    本节将上述非线性有限元方程的显式时间积分算法应用于地震波垂直入射时场地非线性地震反应分析中。假定基岩为线弹性半空间,考虑基岩上覆土层的材料非线性,不考虑土体阻尼。在土层下部设置黏性边界条件模拟半空间基岩的辐射阻尼,并在该处以等效结点力的方式实现地震动输入。

    计算模型见图 2,选取A点作为观测点。土体非线性材料本构模型选取邓肯-张模型,土体线弹性参数见表 1,未给出配套的非线性参数,故算例中的非线性参数参考实际情况选取,后续研究中将使用更真实表现土体非线性行为的本构模型及真实工程场地参数。算例中的大气压参数取100kPa,内摩擦角增量取0°。入射地震动分别选取狄拉克脉冲和实测地震动(Gilroy Array #3,Coyote Lake, 1979)。入射狄拉克脉冲见图 3,观测点结果见图 4,实测地震动见图 5,观测点结果见图 6图 4图 6中给出采用中心差分法的计算结果作为参考解,由图 4图 6可知,本文算法与中心差分法计算结果吻合较好,说明本文算法的有效性。

    图 2  大开车站沿线土层纵断面构造
    Figure 2.  Site condition of the Daikai subway station in vertical direction
    表 1  土层参数
    Table 1.  Parameters of soils
    土质 深度/
    m
    $\rho $/
    (g/cm3
    cs/
    (m/s)
    v
    -
    EN
    -
    Rf
    -
    c/
    (MPa)
    θ/(°) D
    -
    F
    -
    人工填土 0—1.0 1.9 140 0.33 0.33 0.758 0.084 26.9 1.06 0.021
    全新世砂土 1.0—5.1 1.9 140 0.32 0.33 0.758 0.084 26.9 1.06 0.021
    全新世砂土 5.1—8.3 1.9 170 0.32 0.36 0.768 0.120 31.0 1.11 0.015
    更新世粘土 8.3—11.4 1.9 190 0.40 0.44 0.822 0.188 28.4 1.01 0.012
    更新世粘土 11.4—17.2 1.9 240 0.30 0.44 0.822 0.188 28.4 1.01 0.012
    更新世砂土 17.2—22.2 2.0 330 0.26 0.51 0.840 0.300 30.0 1.02 0.011
    基岩 >22.2 2.0 330 0.26 - - - - - -
    下载: 导出CSV 
    | 显示表格
    图 3  狄拉克脉冲速度和加速度时程图
    Figure 3.  Velocity and acceleration time history of the Dirac pulse
    图 4  狄拉克脉冲入射时场地反应分析结果
    Figure 4.  Results of site analysis under the incident of Dirac pulse
    图 5  实测地震动速度和加速度时程图
    Figure 5.  Velocity and acceleration time history of the seismic motion
    图 6  实测地震动入射时场地反应分析结果
    Figure 6.  Results of site reaction analysis under the incident of the seismic motion

    表 1ρcsvENRfcθ为模型参数,分别表示密度、剪切波速、泊松比、无量纲幂次、破坏比、土的内聚力、土的摩擦角。DF为试验常数。

    本文发展一种求解材料非线性结构动力学方程的显式时间积分算法,并应用于地震波竖直入射时非线性地震反应分析中,通过算例验证了该方法的有效性。该显式算法具有无需对角阻尼矩阵、单步、稳定性良好等优点。本文考虑了邓肯-张非线性弹性本构模型,下步研究可考虑将该显式算法扩展到弹塑性本构模型及更能反映土层真实变形的本构模型中。

  • 图  1  不同种类传感器

    Figure  1.  Product pictures of different sensors

    图  2  地王大厦测点位置

    Figure  2.  Layout of sensor installation on Diwang building

    图  3  不同类型加速度传感器加速度时程曲线

    Figure  3.  Acceleration time histories of different sensors in x and y directions

    图  4  不同传感器xy向加速度傅里叶谱

    Figure  4.  Fourier spectrum of acceleration measurement of different sensors in x and y directions

    图  5  不同传感器xy向加速度傅里叶谱幅值相对误差对比

    Figure  5.  Relative errors of peak Fourier spectrum amplitudes of different sensors

    图  6  基于频域分解法的模态频率识别流程

    Figure  6.  Flowchart of the FDD-based modal frequency identification method

    图  7  不同传感器监测数据时频能量云图

    Figure  7.  Time-frequency domain color map of the vibration energy of different sensor measurement

    图  8  G1B型、MEMS-I型加速度传感器监测的结构地震响应时程曲线

    Figure  8.  Comparison of earthquake-induced structural responses measured by the G1B and MEMS-I accelerometers

    图  9  G1B型、MEMS-I型加速度传感器监测的结构地震响应局部波形

    Figure  9.  Detailed comparison of earthquake-induced structural responses measured by the G1B and MEMS-I accelerometers

    图  10  G1B型、MEMS-I型加速度传感器监测的结构地震响应频谱曲线

    Figure  10.  Comparison of Fourier spectrum of earthquake-induced structural responses measured by the G1B and MEMS-I accelerometers

    表  1  传感器技术参数对比

    Table  1.   Comparison of parameters of different sensors

    传感器类型 测量范围/g 频响范围/Hz 动态范围/dB 噪声均方根/(${\text{μ}}{{\rm{g}}}/\sqrt{\rm{H}\rm{z} }$) 功耗/W
    G1B ±3 0~100 >130 0.5 3
    MEMS-I ±2.5 0~80 >90 10.0 <2
    Palert-Plus ±2 0~100 >100 25.0 2
    AC217 ±4 0~100 >104 25.0 <1
    Palert-Advance ±2 0~100 >90 25.0 3
    下载: 导出CSV

    表  2  不同传感器$x $$y $向加速度时程的均方根

    Table  2.   RMS of acceleration measurement of different sensors in ${\boldsymbol{x}} $ and ${\boldsymbol{y}} $ directions

    方向传感器类型
    G1B型MEMS-I型Palert-Plus型AC217型Palert-Advance型
    x0.0150.0370.0400.0480.052
    y0.0180.0380.0420.0480.059
    下载: 导出CSV

    表  3  G1B型加速度传感器实测自振频率识别结果与已有研究结果对比

    Table  3.   Comparison of modal frequency identification results between G1B accelerometer and references

    阶数G1B型加速度传感器
    实测自振频率/Hz
    郭西锐等(2016
    自振频率/Hz
    与郭西锐等(2016
    研究的相对误差/%
    徐枫等(2014
    自振频率/Hz
    与徐枫等(2014
    研究的相对误差/%
    10.168 60.169 70.650.168 90.18
    20.198 40.198 90.250.199 30.45
    30.276 90.277 80.320.278 20.47
    40.540 20.539 40.150.538 30.35
    50.648 50.649 40.140.642 20.98
    60.676 70.677 20.07
    70.841 50.844 70.380.839 30.26
    81.169 01.179 00.851.168 00.09
    91.498 01.498 00.00
    101.582 01.591 00.57
    111.834 01.844 00.541.852 00.97
    121.929 01.943 00.721.942 00.67
    131.965 01.972 00.351.962 00.15
    下载: 导出CSV

    表  4  不同类型加速度传感器监测数据的模态频率识别结果对比

    Table  4.   Comparison of modal frequencies identified from the measurement of different sensors

    阶数G1B型加速度传感器监测数据的模态频率/HzMEMS-I型加速度传感器监测数据的模态频率/HzMEMS-I型与G1B型加速度传感器监测数据的模态频率相对误差/%Palert-Plus型加速度传感器监测数据的模态频率频率/HzPalert-Plus型与G1B型加速度传感器监测数据的模态频率相对误差/%AC217型加速度传感器监测数据的模态频率频率/HzAC217型与G1B型加速度传感器监测数据的模态频率相对误差/%Palert-Advance型加速度传感器监测数据的模态频率频率/HzPalert-Advance型与G1B型加速度传感器监测数据的模态频率相对误差/
    %
    10.168 40.168 30.0590.168 00.2380.169 10.4160.169 90.891
    20.198 50.198 50.0000.198 30.1010.198 60.0500.199 80.655
    30.277 40.277 30.0360.277 60.0720.277 10.1080.279 50.757
    40.540 70.540 80.0180.539 80.1660.541 10.074
    50.647 80.647 80.0000.648 40.0930.648 10.0460.647 90.015
    60.675 90.675 90.0000.676 30.0590.675 80.0150.676 90.148
    70.843 30.843 10.0240.843 10.0240.842 90.0470.843 40.012
    81.171 81.169 80.1711.170 30.1281.170 20.1371.168 60.273
    91.493 71.491 20.1671.491 50.1471.491 10.1741.491 00.181
    101.583 11.581 40.1071.581 70.0881.583 50.0251.584 20.069
    111.839 4
    121.933 01.933 00.0001.932 50.0261.933 00.0001.931 30.088
    131.964 61.964 40.0101.963 20.0711.964 00.0311.962 70.097
    下载: 导出CSV
  • [1] 郭西锐, 王立新, 姜慧等, 2016. 风和温度对地王大厦模态频率的影响研究. 建筑结构, 46(16): 113—120

    Guo X. R. , Wang L. X. , Jiang H. , et al. , 2016. Study of wind and temperature influences on natural frequencies of Diwang Plaza. Building Structure, 46(16): 113—120. (in Chinese)
    [2] 李志强, 2007. 金茂大厦的结构健康监测研究. 上海: 同济大学.

    Li Z. Q., 2007. Research on structure health monitoring of Jin Mao Tower. Shanghai: Tongji University. (in Chinese)
    [3] 徐枫, 陈文礼, 肖仪清等, 2014. 超高层建筑风致振动的现场实测与数值模拟. 防灾减灾工程学报, 34(1): 51—57

    Xu F. , Chen W. L. , Xiao Y. Q. , et al. , 2014. Field measurement and numerical simulation of wind-induced vibration of super high-rise building. Journal of Disaster Prevention and Mitigation Engineering, 34(1): 51—57. (in Chinese)
    [4] Brincker R., Ventura C. E., Andersen P., 2001. Damping estimation by frequency domain decomposition. In: Proceedings of IMAC 19: A Conference on Structural Dynamics. Hyatt Orlando, Kissimmee, Florida: Society for Experimental Mechanics, 698—703.
    [5] Cochran E. , Lawrence J. , Christensen C. , et al. , 2009. A novel strong-motion seismic network for community participation in earthquake monitoring. IEEE Instrumentation & Measurement Magazine, 12(6): 8—15.
    [6] D’Alessandro A. , Scudero S. , Vitale G. , 2019. A review of the capacitive MEMS for seismology. Sensors, 19(14): 3093. doi: 10.3390/s19143093
    [7] Fu J. H. , Li Z. T. , Meng H. , et al. , 2019. Performance evaluation of low-cost seismic sensors for dense earthquake early warning: 2018-2019 field testing in southwest China. Sensors, 19(9): 1999. doi: 10.3390/s19091999
    [8] Hsu T. Y. , Yin R. C. , Wu Y. M. , 2018. Evaluating post-earthquake building safety using economical MEMS seismometers. Sensors, 18(5): 1437. doi: 10.3390/s18051437
    [9] Hu R. P. , Xu Y. L. , Zhao X. , 2020. Optimal multi-type sensor placement for monitoring high-rise buildings under bidirectional long-period ground motions. Structural Control and Health Monitoring, 27(6): e2541.
    [10] Hu X. X. , Wang X. Z. , Chen B. , et al. , 2021. Improved resolution and cost performance of low-cost MEMS seismic sensor through parallel acquisition. Sensors, 21(23): 7970. doi: 10.3390/s21237970
    [11] Kijewski-Correa T. , Kwon D. K. , Kareem A. , et al. , 2013. SmartSync: an integrated real-time structural health monitoring and structural identification system for tall buildings. Journal of Structural Engineering, 139(10): 1675—1687. doi: 10.1061/(ASCE)ST.1943-541X.0000560
    [12] Lin J. F. , Li X. Y. , Wang J. F. , et al. , 2021. Study of building safety monitoring by using cost-effective MEMS accelerometers for rapid after-earthquake assessment with missing data. Sensors, 21(21): 7327. doi: 10.3390/s21217327
    [13] Ni Y. Q. , Xia Y. , Liao W. Y. , et al. , 2009. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Structural Control and Health Monitoring, 16(1): 73—98. doi: 10.1002/stc.303
    [14] Nof R. N. , Chung A. I. , Rademacher H. , et al. , 2019. MEMS accelerometer mini-array (MAMA): a low-cost implementation for earthquake early warning enhancement. Earthquake Spectra, 35(1): 21—38. doi: 10.1193/021218EQS036M
    [15] Pozzi M. , Zonta D. , Trapani D. , et al. , 2011. MEMS-based sensors for post-earthquake damage assessment. Journal of Physics: Conference Series, 305: 012100 doi: 10.1088/1742-6596/305/1/012100
    [16] Spencer Jr. B. F. , Ruiz-Sandoval M. , Kurata N. , 2004. Smart sensing technology: opportunities and challenges. Structural Control and Health Monitoring, 11(4): 349—368. doi: 10.1002/stc.48
    [17] Su J. Z. , Xia Y. , Chen L. , et al. , 2013. Long-term structural performance monitoring system for the Shanghai Tower. Journal of Civil Structural Health Monitoring, 3(1): 49—61. doi: 10.1007/s13349-012-0034-z
    [18] Wang F. , Ma J. M. , Kang X. D. , et al. , 2022. Building response analyses recorded by force-balanced and micro-electro mechanical system accelerometers. Mechanics of Advanced Materials and Structures, 29(11): 1650—1660. doi: 10.1080/15376494.2022.2061658
    [19] Wu Y. M. , Chen D. Y. , Lin T. L. , et al. , 2013. A high-density seismic network for earthquake early warning in Taiwan based on low cost sensors. Seismological research letters, 84(6): 1048—1054. doi: 10.1785/0220130085
    [20] Wu Y. M. , 2015. Progress on development of an earthquake early warning system using low-cost sensors. Pure and Applied Geophysics, 172(9): 2343—2351. doi: 10.1007/s00024-014-0933-5
    [21] Yin R. C. , Wu Y. M. , Hsu T. Y. , 2016. Application of the low-cost MEMS-type seismometer for structural health monitoring: a pre-study. In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference. Taipei, China: IEEE, 1—5.
  • 期刊类型引用(2)

    1. 沈银澜,周敬轩,王利辉,刘辉,周海宾,吴震东,宫逸飞. 北方村落木结构民居榫卯节点抗震性能试验研究. 震灾防御技术. 2021(01): 165-175 . 本站查看
    2. 郭光玲,郭瑞,徐乾. 略阳县农居房屋抗震现状调查与评价研究. 震灾防御技术. 2021(03): 492-500 . 本站查看

    其他类型引用(4)

  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  59
  • PDF下载量:  58
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-03-26
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回