• ISSN 1673-5722
  • CN 11-5429/P

高起伏区无人机摄影测量精度评估−以西秦岭光盖山-迭山断裂为例

张波 高泽民 王爱国 刘小丰 郑龙 袁道阳

张波,高泽民,王爱国,刘小丰,郑龙,袁道阳,2022. 高起伏区无人机摄影测量精度评估−以西秦岭光盖山-迭山断裂为例. 震灾防御技术,17(2):326−339. doi:10.11899/zzfy20220213. doi: 10.11899/zzfy20220213
引用本文: 张波,高泽民,王爱国,刘小丰,郑龙,袁道阳,2022. 高起伏区无人机摄影测量精度评估−以西秦岭光盖山-迭山断裂为例. 震灾防御技术,17(2):326−339. doi:10.11899/zzfy20220213. doi: 10.11899/zzfy20220213
Zhang Bo, Gao Zemin, Wang Aiguo, Liu Xiaofeng, Zheng Long, Yuan Daoyang. Accuracy Assessment of UAV Photogrammetry in High-Relief Area−A Case Study from Guanggaishan-Dieshan Fault in West Qinling Mountain[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 326-339. doi: 10.11899/zzfy20220213
Citation: Zhang Bo, Gao Zemin, Wang Aiguo, Liu Xiaofeng, Zheng Long, Yuan Daoyang. Accuracy Assessment of UAV Photogrammetry in High-Relief Area−A Case Study from Guanggaishan-Dieshan Fault in West Qinling Mountain[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 326-339. doi: 10.11899/zzfy20220213

高起伏区无人机摄影测量精度评估−以西秦岭光盖山-迭山断裂为例

doi: 10.11899/zzfy20220213
基金项目: 国家自然基金青年基金(41602225);第二次青藏高原综合科学考察研究项目(2019QZKK0901);中国地震局地震预测研究所基本科研项目(2021IESLZ06、2020IESLZ02、2019IESLZ03、2018IESLZ02)
详细信息
    作者简介:

    张波,男,生于1986年。博士,副研究员。主要从事新生代构造与活动构造研究。E-mail:kjwxn999@163.com

    通讯作者:

    王爱国,男,生于1972年。研究员。主要从事地震地质、工程地震及数值模拟方面的研究。E-mail:waguo2008@163.com

Accuracy Assessment of UAV Photogrammetry in High-Relief Area−A Case Study from Guanggaishan-Dieshan Fault in West Qinling Mountain

  • 摘要: 经过近10年的迅速发展,无人机摄影测量已成为活动构造研究的常用方法之一。但对于无人机摄影测量的精度评估,尤其是高起伏地区的精度评估存在不足。为此,选择白龙江北岸光盖山-迭山断裂沿线的黑峪寺、化马村,开展无人机摄影测量,并构建正射影像(DOM)和数字地表模型(DSM),配合差分GPS测绘进行校正和精度验证。通过对比实测控制点和图像提取点分析点精度,通过对比实测剖面与提取剖面分析剖面精度。研究结果表明,未经控制点校正的图像提取点与实测点存在较大误差,水平误差为5~8 m,垂直误差为几十米至上百米,但通过少数控制点校正后,点精度可达20 cm以内;6条实测剖面与提取剖面(提取自控制点校正后的图像)平均垂直精度总体为分米级,即0.16~0.65 m,标准差为0.13~0.69 m,略低于低起伏区的精度,对于测量条件恶劣的高起伏区,该精度是可接受的;异常高的垂直误差常出现在地形突变、低矮植被密集、行走困难等测量条件不理想位置。图像控制点中心点的准确识别、提取剖面线的修正准确性等因素也会影响精度评估的可靠性。
  • 图  1  西秦岭白龙江流域地形地貌及测点分布

    Figure  1.  Topography and measure sites distribution in Bailongjiang watershed, West Qinling

    图  2  无人机摄影测量原理

    Figure  2.  Schematic diagram of UAV photogrammetry

    图  3  黑峪寺无人机摄影测量构建的DOM和DSM

    Figure  3.  DOM and DSM of Heiyusi site constructed by UAV Photogrammetry

    图  4  黑峪寺地形剖面分布

    Figure  4.  Distribution of topographical profiles at Heiyusi site

    图  5  黑峪寺P1实测剖面与提取剖面对比

    Figure  5.  Comparison of P1 in Heiyusi between measured profiles and extraction profiles

    图  6  黑峪寺P2实测剖面与提取剖面对比

    Figure  6.  Comparison of P2 in Heiyusi between measured profiles and extraction profiles

    图  7  黑峪寺P3实测剖面与提取剖面对比

    Figure  7.  Comparison of P3 in Heiyusi between measured profiles and extraction profiles

    图  8  化马村无人机摄影测量

    Figure  8.  UAV Photogrammetry of Huama site

    图  9  化马村地形剖面分布

    Figure  9.  Distribution of Topographical profiles in Huama site

    图  10  化马村P1实测剖面与提取剖面对比

    Figure  10.  Comparison of P1 in Huama between measured profiles and extraction profiles

    图  11  化马村P2实测剖面与提取剖面对比

    Figure  11.  Comparison of P2 in Huama between measured profiles and extraction profiles

    图  12  化马村P3实测剖面与提取剖面对比

    Figure  12.  Comparison of P3 in Huama between measured profiles and extraction profiles

    表  1  黑峪寺和化马村测量情况

    Table  1.   Measurements of Heiyusi and Huama site

    工作点飞行高度/
    m
    测量面积/
    km2
    图像重叠度/
    %
    照片数量/张控制点数目/个点云密度/
    点·m−2
    正射影像(DOM)
    分辨率/cm
    数字地表模型
    (DSM)分辨率/cm
    黑峪寺124.00.725约701 1601231.44.4617.8
    化马村98.60.385约70427747.03.6514.6
    下载: 导出CSV

    表  2  黑峪寺未校正图像提取控制点与差分GPS实测控制点水平误差和垂直误差

    Table  2.   Horizontal and vertical errors between uncorrected image extraction points and DGPS measured points

    控制点未校正图像提取控制点差分GPS实测控制点水平误差/m垂直误差/m
    经度/°纬度/°高度/m经度/°纬度/°高度/m
    1104.186 256 033.924 494 02 265.156104.186 241 133.924 436 32 152.306.54112.85
    2104.186 157 033.923 752 02 236.890104.186 139 133.923 690 02 125.357.08111.54
    3104.185 135 033.924 406 02 240.789104.185 117 633.924 343 72 128.937.1111.86
    4104.184 937 033.925 042 02 246.660104.184 919 933.924 979 42 133.697.12112.97
    5104.184 051 033.924 445 02 216.075104.184 030 333.924 377 22 104.697.76111.38
    6104.184 389 033.925 279 02 244.573104.184 371 833.925 216 12 131.537.16113.05
    7104.184 360 033.926 269 02 275.363104.184 346 333.926 211 82 160.586.47114.79
    8104.183 976 033.926 130 02 266.602104.183 961 133.926 071 92 152.416.59114.19
    9104.183 428 033.925 507 02 263.471104.183 411 833.925 446 62 150.936.86112.54
    10104.183 103 033.926 348 02 279.589104.183 087 833.926 292 72 165.806.29113.79
    11104.182 400 033.926 389 02 288.628104.182 384 833.926 333 72 175.406.29113.23
    12104.182 916 033.927 011 02 311.029104.182 903 333.926 961 32 196.415.64114.62
    下载: 导出CSV

    表  3  经6个控制点校正后提取的检验点坐标与实测坐标对比

    Table  3.   Comparison between six control points-corrected test points and measured points

    检验点从DOM和DSM提取坐标差分GPS实测控制点水平误差/m垂直误差/m
    经度/°纬度/°高度/m经度/°纬度/°高度/m
    2104.186 140 033.923 689 02 125.46104.186 139 133.923 690 02 125.350.150.11
    4104.184 920 033.924 981 02 133.82104.184 919 933.924 979 42 133.690.20.13
    6104.184 371 033.925 217 02 131.74104.184 371 833.925 216 12 131.530.140.22
    8104.183 960 033.926 072 02 152.54104.183 961 133.926 071 92 152.410.080.13
    11104.182 385 033.926 335 02 175.32104.182 384 833.926 333 72 175.400.170.07
    12104.182 903 033.926 960 02 196.22104.182 903 333.926 961 32 196.410.150.19
    下载: 导出CSV

    表  4  化马村未校正图像提取控制点与差分GPS实测控制点水平误差和垂直误差

    Table  4.   Directional error at Huama site between extraction points from uncorrected images and measured points

    控制点未校正图像提取控制点差分GPS实测控制点水平误差/m垂直误差/m
    经度/°纬度/°高度/m经度/°纬度/°高度/m
    1104.540 325 033.741 176 01 556.67104.540 28833.741 114 41 594.247.6537.57
    2104.541 607 033.741 010 01 532.95104.541 56733.740 947 41 569.417.9036.46
    3104.540 270 033.740 160 01 512.82104.540 22633.740 100 61 550.567.7537.74
    4104.540 635 033.739 285 01 467.24104.540 58533.739 227 61 503.287.8636.04
    5104.540 810 033.738 124 01 469.00104.540 76133.738 065 91 506.097.8937.09
    6104.541 360 033.739 435 01 500.42104.541 31533.739 375 31 537.037.8436.60
    7104.542 265 033.740 881 01 536.25104.542 22433.740 818 01 572.047.9735.79
    下载: 导出CSV
  • [1] 艾明, 2018. 高精度摄影测量方法在活动构造定量参数获取中的应用——以茶卡盆地两侧断裂为例. 北京: 中国地震局地质研究所.

    Ai M., 2018. Application of high-precision photogrammetry method in obtaining quantitative parameters of active tectonics-A case study of the faults on the two sides of the Caka Basin. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese)
    [2] 艾明, 毕海芸, 郑文俊等, 2018. 利用无人机摄影测量技术提取活动构造定量参数. 地震地质, 40(6): 1276—1293

    Ai M. , Bi H. Y. , Zheng W. J. , et al. , 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics. Seismology and Geology, 40(6): 1276—1293. (in Chinese)
    [3] 毕海芸, 郑文俊, 曾江源等, 2017. SfM摄影测量方法在活动构造定量研究中的应用. 地震地质, 39(4): 656—674 doi: 10.3969/j.issn.0253-4967.2017.04.003

    Bi H. Y. , Zheng W. J. , Zeng J. Y. , et al. , 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics. Seismology and Geology, 39(4): 656—674. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.04.003
    [4] 常直杨, 王建, 白世彪等, 2015. 白龙江流域河流纵剖面与基岩侵蚀模型特征. 山地学报, 33(2): 183—190

    Chang Z. Y. , Wang J. , Bai S. B. , et al. , 2015. Morpho-tectonic analysis of the Bailongjiang drainage basin. Mountain Research, 33(2): 183—190. (in Chinese)
    [5] 陈洪凯, 李吉均. 1997. 白龙江流域第四纪以来地貌发育基本模式研究. 重庆交通学院学报, 16(1): 15—20

    Chen H. K., Li J. J., 1997. General approach on geomorphologic evolution in Bailongjiang basin since Quaternary. Journal of Chongqing Jiaotong Institute, 16(1): 15—20. (in Chinese)
    [6] 梁学战, 陈洪凯, 唐红梅, 2010. 青藏高原东部边缘地区第四纪泥石流发育特性研究. 重庆交通大学学报(自然科学版), 29(6): 978—983

    Liang X. Z. , Chen H. K. , Tang H. M. , 2010. Studies on debris flow development properties in Quaternary on the eastern edge of Qinghai-Tibet Plateau. Journal of Chongqing Jiaotong University (Natural Sciences), 29(6): 978—983. (in Chinese)
    [7] 刘兴旺, 袁道阳, 邵延秀等, 2015. 甘肃迭部—白龙江南支断裂中东段晚第四纪构造活动特征. 地球科学与环境学报, 37(6): 111—119 doi: 10.3969/j.issn.1672-6561.2015.06.010

    Liu X. W. , Yuan D. Y. , Shao Y. X. , et al. , 2015. Characteristics of late Quaternary tectonic activity in the middle-eastern segment of the southern branch of Diebu-Bailongjiang fault, Gansu. Journal of Earth Sciences and Environment, 37(6): 111—119. (in Chinese) doi: 10.3969/j.issn.1672-6561.2015.06.010
    [8] 苏琦, 梁明剑, 袁道阳等, 2016. 白龙江流域构造地貌特征及其对滑坡泥石流灾害的控制作用. 地球科学, 41(10): 1758—1770

    Su Q. , Liang M. J. , Yuan D. Y. , et al. , 2016. Geomorphic features of the Bailongjiang river drainage basin and its relationship with geological disaster. Earth Science, 41(10): 1758—1770. (in Chinese)
    [9] 王朋涛, 邵延秀, 张会平等, 2016. sUAV摄影技术在活动构造研究中的应用——以海原断裂骟马沟为例. 第四纪研究, 36(2): 433—442 doi: 10.11928/j.issn.1001-7410.2016.02.18

    Wang P. T. , Shao Y. X. , Zhang H. P. , et al. , 2016. The application of sUAV Photogrammetry in active tectonics: Shanmagou site of Haiyuan fault, for example. Quaternary Sciences, 36(2): 433—442. (in Chinese) doi: 10.11928/j.issn.1001-7410.2016.02.18
    [10] 魏占玉, Ramon A, 何宏林等, 2015. 基于SfM方法的高密度点云数据生成及精度分析. 地震地质, 37(2): 636—648 doi: 10.3969/j.issn.0253-4967.2015.02.024

    Wei Z. Y. , Ramon A. , He H. L. , et al. , 2015. Accuracy analysis of terrain point cloud acquired by “Structure from Motion” using aerial photos. Seismology and Geology, 37(2): 636—648. (in Chinese) doi: 10.3969/j.issn.0253-4967.2015.02.024
    [11] 杨海波, 杨晓平, 黄雄南等, 2016. 移动摄影测量数据与差分GPS数据的对比分析——以祁连山北麓洪水坝河东岸断层陡坎为例. 地震地质, 38(4): 1030—1046 doi: 10.3969/j.issn.0253-4967.2016.04.018

    Yang H. B. , Yang X. P. , Huang X. N. , et al. , 2016. Data comparative analysis between SfM data and DGPS data: a case study from fault scarp in the east bank of Hongshuiba river, northern margin of the Qilian Shan. Seismology and Geology, 38(4): 1030—1046. (in Chinese) doi: 10.3969/j.issn.0253-4967.2016.04.018
    [12] 余斌, 杨永红, 苏永超等, 2010. 甘肃省舟曲8.7特大泥石流调查研究. 工程地质学报, 18(4): 437—444 doi: 10.3969/j.issn.1004-9665.2010.04.001

    Yu B. , Yang Y. H. , Su Y. C. , et al. , 2010. Research on the giant debris flow hazards in Zhouqu county, Gansu Province on August 7, 2010. Journal of Engineering Geology, 18(4): 437—444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2010.04.001
    [13] 俞晶星, 郑文俊, 袁道阳等, 2012. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率. 第四纪研究, 32(5): 957—967 doi: 10.3969/j.issn.1001-7410.2012.05.13

    Yu J. X. , Zheng W. J. , Yuan D. Y. , et al. , 2012. Late Quaternary active characteristics and slip-rate of Pingding-Huama fault, the eastern segment of Guanggaishan-Dieshan fault zone (West Qinling Mountain). Quaternary Sciences, 32(5): 957—967. (in Chinese) doi: 10.3969/j.issn.1001-7410.2012.05.13
    [14] 袁道阳, 雷中生, 何文贵等, 2007. 公元前186年甘肃武都地震考证与发震构造探讨. 地震学报, 29(6): 654—663

    Yuan D. Y., Lei Z. S., He W. G., et al., 2007. Textual research of Wudu earthquake in 186 B. C. in Gansu Province, China and discussion on its causative structure. Acta Seismologica Sinica, 29(6): 654—663. (in Chinese)
    [15] 张波, 王爱国, 袁道阳等, 2018. 基于多源遥感解译和野外验证的断裂几何展布——以西秦岭光盖山-迭山南麓断裂为例. 地震地质, 40(5): 1018—1039 doi: 10.3969/j.issn.0253-4967.2018.05.005

    Zhang B. , Wang A. G. , Yuan D. Y. , et al. , 2018. Fault geometry defined by multiple remote sensing images interpretation and field verification: A case study from southern Guanggaishan-Dieshan fault, Western Qinling. Seismology and Geology, 40(5): 1018—1039. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.05.005
    [16] Bemis S. P. , Micklethwaite S. , Turner D. , et al. , 2014. Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69: 163—178. doi: 10.1016/j.jsg.2014.10.007
    [17] Harwin S. , Lucieer A. , 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6): 1573—1599. doi: 10.3390/rs4061573
    [18] Javernick L. , Brasington J. , Caruso B. , 2014. Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry. Geomorphology, 213: 166—182. doi: 10.1016/j.geomorph.2014.01.006
    [19] Johnson K. , Nissen E. , Saripalli S. , et al. , 2014. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere, 10(5): 969—986. doi: 10.1130/GES01017.1
    [20] Lowe D. G. , 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91—110. doi: 10.1023/B:VISI.0000029664.99615.94
    [21] Lucieer A. , De Jong S. M. , Turner D. , 2014. Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography: Earth and Environment, 38(1): 97—116. doi: 10.1177/0309133313515293
    [22] Mancini F. , Dubbini M. , Gattelli M. , et al. , 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. Remote Sensing, 5(12): 6880—6898. doi: 10.3390/rs5126880
    [23] Moreels P. , Perona P. , 2007. Evaluation of features detectors and descriptors based on 3D objects. International Journal of Computer Vision, 73(3): 263—284. doi: 10.1007/s11263-006-9967-1
    [24] Westoby M. J. , Brasington J. , Glasser N. F. , et al. , 2012. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology, 179: 300—314. doi: 10.1016/j.geomorph.2012.08.021
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  58
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回