• ISSN 1673-5722
  • CN 11-5429/P

2022年青海门源MS6.9地震后冷龙岭断裂未来强震的水平位错量评估

吴果 孙浩越 吕丽星 冉洪流 周庆 周介元

吴果,孙浩越,吕丽星,冉洪流,周庆,周介元,2022. 2022年青海门源MS6.9地震后冷龙岭断裂未来强震的水平位错量评估. 震灾防御技术,17(2):308−315. doi:10.11899/zzfy20220211. doi: 10.11899/zzfy20220211
引用本文: 吴果,孙浩越,吕丽星,冉洪流,周庆,周介元,2022. 2022年青海门源MS6.9地震后冷龙岭断裂未来强震的水平位错量评估. 震灾防御技术,17(2):308−315. doi:10.11899/zzfy20220211. doi: 10.11899/zzfy20220211
Wu Guo, Sun Haoyue, Lv Lixing, Ran Hongliu, Zhou Qing, Zhou Jieyuan. Assessment of Horizontal Displacements for Future Strong Earthquakes on the Lenglongling Fault after the 2022 MS6.9 Menyuan Earthquake, Qinghai Province, China[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 308-315. doi: 10.11899/zzfy20220211
Citation: Wu Guo, Sun Haoyue, Lv Lixing, Ran Hongliu, Zhou Qing, Zhou Jieyuan. Assessment of Horizontal Displacements for Future Strong Earthquakes on the Lenglongling Fault after the 2022 MS6.9 Menyuan Earthquake, Qinghai Province, China[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 308-315. doi: 10.11899/zzfy20220211

2022年青海门源MS6.9地震后冷龙岭断裂未来强震的水平位错量评估

doi: 10.11899/zzfy20220211
基金项目: 国家重点研发计划(2021YFC3000605)
详细信息
    作者简介:

    吴果,男,生于1988年。博士,助理研究员。主要从事地震活动性和地震危险性研究工作。E-mail:wgfirst@foxmail.com

Assessment of Horizontal Displacements for Future Strong Earthquakes on the Lenglongling Fault after the 2022 MS6.9 Menyuan Earthquake, Qinghai Province, China

  • 摘要: 2022年1月8日青海门源发生S6.9地震,该地震造成冷龙岭断裂西端错断了兰新铁路大梁隧道,导致铁路长期停运,经济损失巨大。制定隧道修复方案时,需对冷龙岭断裂未来强震的水平位错量进行评估。结合近年来冷龙岭断裂的最新研究进展,同时采用确定性方法和概率断层位错危险性分析方法评估冷龙岭断裂未来强震的水平位错量。考虑不确定因素影响,同时采用3名研究者提供的震级与最大位错量经验关系式进行估算。结果表明,不同经验关系式会对评估结果产生显著影响,其中根据确定性方法得到的冷龙岭断裂未来强震的水平位错量为2.32~4.36 m,均值为3.57 m。概率断层位错危险性分析结果随着超越概率的降低而增大,50年超越概率2%、100年超越概率2%和100年超越概率1%的结果均值分别为1.82 m、3.17 m、4.61 m。相较于确定性方法,概率断层位错危险性分析可提供不同超越概率水平下的位错参数,以供不同抗震设防要求的建筑采用。此外,对于地震活动性强的断裂,可采用低超越概率下的概率断层位错危险性分析结果,该结果可能会大于确定性方法评估结果。
  • 图  1  门源MS6.9地震构造背景

    Figure  1.  Tectonic background map of Menyuan MS6.9 earthquake

    图  2  大梁隧道破坏情况

    Figure  2.  Photos of Daliang tunnel damaged by Menyuan MS6.9 earthquake

    表  1  确定性方法给出的水平位错量评估结果

    Table  1.   Assessment results of horizontal displacement by deterministic method

    方法类型最大水平位错量/m最大水平位错量平均值/m
    邓起东等(1992)关系式4.033.57
    冉洪流(2011)关系式4.36
    Wells等(1994)关系式2.32
    下载: 导出CSV

    表  2  概率断层位错危险性分析得到的水平位错量评估结果

    Table  2.   Assessment results of horizontal displacement by probabilistic fault displacement hazard analysis

    项目水平位错量/m
    50年超越概率2%100年超越概率2%100年超越概率1%
    邓起东等(1992)给出的关系式1.963.735.73
    冉洪流(2011)给出的关系式2.894.375.77
    Wells等(1994)给出的关系式0.611.402.32
    平均值1.823.174.61
    平均值*2.684.085.48
    平均值*/平均值1.471.291.19
    下载: 导出CSV
  • [1] 曹毅渊, 刘爱文, 王芬芬等, 2019. 穿越克孜尔逆冲断层的输气管道抗震分析. 震灾防御技术, 14(1): 35—41 doi: 10.11899/zzfy20190104

    Cao Y. Y. , Liu A. W. , Wang F. F. , et al. , 2019. Anti-seismic analysis of gas pipeline crossing through the Kezil thrustfault fault. Technology for Earthquake Disaster Prevention, 14(1): 35—41. (in Chinese) doi: 10.11899/zzfy20190104
    [2] 邓起东, 于贵华, 叶文华, 1992. 地震地表破裂参数与震级关系的研究. 见: 《活动断裂研究》编委会主编, 活动断裂研究理论与应用. 北京: 地震出版社, 247—264.
    [3] 顾功叙, 1983. 中国地震目录: 公元前1831—公元1969年. 北京: 科学出版社.
    [4] 郭鹏, 韩竹军, 姜文亮等, 2017. 青藏高原东北缘冷龙岭断裂全新世左旋滑动速率. 地震地质, 39(2): 323—341 doi: 10.3969/j.issn.0253-4967.2017.02.005

    Guo P. , Han Z. J. , Jiang W. L. , et al. , 2017. Holocene left-lateral slip rate of the Lenglongling fault, northeastern margin of the Tibetan Plateau. Seismology and Geology, 39(2): 323—341. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.02.005
    [5] 郭鹏, 2019. 北祁连山冷龙岭断裂大震复发行为与危险性研究. 北京: 中国地震局地质研究所.

    Guo P., 2019. Earthquake recurrence behavior and seismic hazards of the Lenglongling Fault, Northern Qilian Shan. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese)
    [6] 荆旭, 2019. 走滑型断层地表永久位移预测模型研究. 世界地震工程, 35(2): 18—23

    Jing X. , 2019. Study on prediction model of surface permanent displacement of strike-slip faults. World Earthquake Engineering, 35(2): 18—23. (in Chinese)
    [7] 李智敏, 盖海龙, 李鑫等, 2022.2022年青海门源MS6.9级地震发震构造和地表破裂初步调查. 地质学报, 96(1): 330—335

    Li Z. M. , Gai H. L. , Li X. , et al. , 2022. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai, China. Acta Geologica Sinica, 96(1): 330—335. (in Chinese)
    [8] 潘华, 高孟潭, 谢富仁, 2013. 新版地震区划图地震活动性模型与参数确定. 震灾防御技术, 8(1): 11—23 doi: 10.3969/j.issn.1673-5722.2013.01.002

    Pan H. , Gao M. T. , Xie F. R. , 2013. The earthquake activity model and seismicity parameters in the new seismic hazard map of China. Technology for Earthquake Disaster Prevention, 8(1): 11—23. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.01.002
    [9] 潘华, 张萌, 李金臣, 2017. 美国地震区划图的发展−地震危险性图与抗震设计图. 震灾防御技术, 12(3): 511—522 doi: 10.11899/zzfy20170307

    Pan H. , Zhang M. , Li J. C. , 2017. Review of seismic zonation in United States, seismic hazard maps and seismic design maps. Technology for Earthquake Disaster Prevention, 12(3): 511—522. (in Chinese) doi: 10.11899/zzfy20170307
    [10] 潘家伟, 李海兵, Chevalier M. L. 等, 2022.2022年青海门源MS6.9地震地表破裂带及发震构造研究. 地质学报, 96(1): 215—231 doi: 10.3969/j.issn.0001-5717.2022.01.018

    Pan J. W. , Li H. B. , Chevalier M. L. , et al. , 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China. Acta Geologica Sinica, 96(1): 215—231. (in Chinese) doi: 10.3969/j.issn.0001-5717.2022.01.018
    [11] 冉洪流, 周本刚, 2004a. 地表潜在断错位移的概率评价方法. 工程地质学报, 12(1): 93—97

    Ran H. L. , Zhou B. G. , 2004a. Probabilitistic assessment of potential ground offset along strike-slip engineering active fault. Journal of Engineering Geology, 12(1): 93—97. (in Chinese)
    [12] 冉洪流, 周本刚, 2004b. 断层地表潜在突发位移的概率评价初探. 地震地质, 26(1): 133—140

    Ran H. L. , Zhou B. G. , 2004b. Research on the probabilistic assessment of potential ground offset along active fault. Seismology and Geology, 26(1): 133—140. (in Chinese)
    [13] 冉洪流, 2011. 中国西部走滑型活动断裂的地震破裂参数与震级的经验关系. 地震地质, 33(3): 577—585 doi: 10.3969/j.issn.0253-4967.2011.03.008

    Ran H. L. , 2011. Empirical relations between earthquake magnitude and parameters of strike-slip seismogenic active faults associated with historical earthquakes in western China. Seismology and Geology, 33(3): 577—585. (in Chinese) doi: 10.3969/j.issn.0253-4967.2011.03.008
    [14] 孙建宝, 2002. 地震活动断层段潜在地表位移概率评价及基于GIS的系统设计. 北京: 中国地震局地质研究所.

    Sun J. B., 2002. A GIS-based system for probability evaluation of potential surface displacement on active fault segments associated with earthquakes-theory and practice. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese)
    [15] 吴果, 周庆, 冉洪流, 2014. 中亚地震目录震级转换及其完整性分析. 震灾防御技术, 9(3): 368—383 doi: 10.11899/zzfy20140304

    Wu G. , Zhou Q. , Ran H. L. , 2014. Magnitude conversion of earthquake catalog in central Asia and the completeness analysis. Technology for Earthquake Disaster Prevention, 9(3): 368—383. (in Chinese) doi: 10.11899/zzfy20140304
    [16] 吴果, 冉洪流, 周庆, 2022. 基于蒙特卡洛模拟的概率断层位错危险性分析. 地球科学, 47(3): 844—855

    Wu G. , Ran H. L. , Zhou Q. , 2022. Probabilistic fault displacement hazard analysis based on Monte Carlo simulation. Earth Science, 47(3): 844—855. (in Chinese)
    [17] 谢卓娟, 李山有, 吕悦军等, 2020. 中国海域及邻区统一地震目录及其完整性分析. 地震地质, 42(4): 993—1019 doi: 10.3969/j.issn.0253-4967.2020.04.015

    Xie Z. J. , Li S. Y. , Lü Y. J. , et al. , 2020. Unified earthquake catalog for China’s seas and adjacent regions and its completeness analysis. Seismology and Geology, 42(4): 993—1019. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.04.015
    [18] 新疆维吾尔自治区地震局, 1985. 富蕴地震断裂带. 北京: 地震出版社.
    [19] 张力方, 吕悦军, 兰景岩等, 2013. 空间光滑活动模型在东部海域地震危险性评价中的应用. 地震研究, 36(3): 342—351 doi: 10.3969/j.issn.1000-0666.2013.03.014

    Zhang L. F. , Lü Y. J. , Lan J. Y. , et al. , 2013. Application of spatially smoothing seismic-activity model on seismic hazard estimation in east China offshore areas. Journal of Seismological Research, 36(3): 342—351. (in Chinese) doi: 10.3969/j.issn.1000-0666.2013.03.014
    [20] Chen R. , Petersen M. D. , 2011. Probabilistic fault displacement hazards for the Southern San Andreas Fault using scenarios and empirical slips. Earthquake Spectra, 27(2): 293—313. doi: 10.1193/1.3574226
    [21] Cheng J. , Rong Y. F. , Magistrale H. , et al. , 2017. An Mw-based historical earthquake catalog for Mainland China. Bulletin of the Seismological Society of America, 107(5): 2490—2500. doi: 10.1785/0120170102
    [22] Gaudemer Y. , Tapponnier P. , Meyer B. , et al. , 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3): 599—645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    [23] Guo P. , Han Z. J. , Dong S. P. , et al. , 2019. Surface rupture and slip distribution along the Lenglongling fault in the NE Tibetan Plateau: implications for faulting behavior. Journal of Asian Earth Sciences, 172: 190—207. doi: 10.1016/j.jseaes.2018.09.008
    [24] Petersen M. D. , Dawson T. E. , Chen R. , et al. , 2011. Fault displacement hazard for strike-slip faults. Bulletin of the Seismological Society of America, 101(2): 805—825. doi: 10.1785/0120100035
    [25] Valentini A. , Fukushima Y. , Contri P. , et al. , 2021. Probabilistic fault displacement hazard assessment (PFDHA) for nuclear installations according to IAEA safety standards. Bulletin of the Seismological Society of America, 111(5): 2661—2672. doi: 10.1785/0120210083
    [26] Wells D. L. , Coppersmith K. J. , 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974—1002.
    [27] Wesnousky S. G. , 2008. Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98(4): 1609—1632. doi: 10.1785/0120070111
    [28] Xu X. W. , Wen X. Z. , Yu G. H. , et al. , 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW 7.9 Wenchuan earthquake, China. Geology, 37(6): 515—518. doi: 10.1130/G25462A.1
    [29] Youngs R. R. , Arabasz W. J. , Anderson R. E. , et al. , 2003. A methodology for probabilistic fault displacement hazard analysis (PFDHA). Earthquake Spectra, 19(1): 191—219. doi: 10.1193/1.1542891
    [30] Yuan D. Y. , Ge W. P. , Chen Z. W. , et al. , 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies. Tectonics, 32(5): 1358—1370. doi: 10.1002/tect.20081
    [31] Zhang M. , Pan H. , 2021. Application of generalized Pareto distribution for modeling aleatory variability of ground motion. Natural Hazards, 108(3): 2971—2989. doi: 10.1007/s11069-021-04809-3
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  53
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回