• ISSN 1673-5722
  • CN 11-5429/P

盘谷寺-新乡断裂第四纪活动性分段特征

郁军建 张扬 孙印 张哲

苏佶智, 邢国华, 马煜东, 刘伯权. 反复荷载作用下锈蚀钢筋混凝土柱力学性能研究[J]. 震灾防御技术, 2018, 13(3): 512-523. doi: 10.11899/zzfy20180303
引用本文: 郁军建,张扬,孙印,张哲,2022. 盘谷寺-新乡断裂第四纪活动性分段特征. 震灾防御技术,17(2):261−268. doi:10.11899/zzfy20220207. doi: 10.11899/zzfy20220207
Su Jizhi, Xing Guohua, Ma Yudong, Liu Boquan. Study on Mechanical Properties of Corroded Reinforced Concrete Frame Columns Under Cyclic Load[J]. Technology for Earthquake Disaster Prevention, 2018, 13(3): 512-523. doi: 10.11899/zzfy20180303
Citation: Yu Junjian, Zhang Yang, Sun Yin, Zhang Zhe. Quaternary Active Segmentation Characteristics of the Pangusi-Xinxiang Fault[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 261-268. doi: 10.11899/zzfy20220207

盘谷寺-新乡断裂第四纪活动性分段特征

doi: 10.11899/zzfy20220207
基金项目: 中央公益性科研院所基本科研业务专项(IGCEA1902);中国地震局城市活动断层探测与地震危险性评价项目;河南省地震构造探查工程项目;开封市活动断层探测与地震危险性评价服务
详细信息
    作者简介:

    郁军建,男,生于1989年。硕士,工程师。主要从事构造地质、三维地质研究工作。E-mail:yujunjian1025@163.com

    通讯作者:

    张扬,男,生于1982年。博士,高级工程师。主要从事构造地质、活动构造研究工作。E-mail:949510935@qq.com

  • 2 河南省地质矿产局编. 1985. 河南省区域地质志.
  • 3 中国地震局地球物理勘探中心郑州基础工程勘察研究院. 2015. 焦作市活动断层探测与地震危险性评价技术报告.

Quaternary Active Segmentation Characteristics of the Pangusi-Xinxiang Fault

  • 摘要: 盘谷寺-新乡断裂以柏山、高村为界,分为西、中、东3段,根据物探剖面、地质标准孔和地层剖面出露特征,各段活动性具有明显差异。其中西段最新活动时代为中更新世,具有向盆地迁移发育的特征;中段最新活动时代为晚更新世早期;东段活动性稍复杂,经历了正断-逆冲-正断的运动过程演变,其最新活动时代为晚更新世早期,且活动强度向两端减弱。高村所处的武陟隆起区推测为盘谷寺-新乡断裂中、东段的挤压阶区,断层位移在此处有亏损和衰减。
    1)  2 河南省地质矿产局编. 1985. 河南省区域地质志.
    2)  3 中国地震局地球物理勘探中心郑州基础工程勘察研究院. 2015. 焦作市活动断层探测与地震危险性评价技术报告.
  • 钢筋混凝土结构在设计使用年限内受到自然环境、使用环境及自身裂化发展的影响,必然会出现不同程度的耐久性损伤。损伤逐步累积,最终导致结构耐久性降低、承载力下降、力学性能退化。在诸多影响结构耐久性的因素中,钢筋锈蚀最为重要(Mehta,1991),主要体现在以下2个方面:①锈蚀使钢筋的有效截面面积和力学性能受到损失,使其与混凝土之间的胶结能力和咬合作用减弱,导致混凝土结构承载能力降低;②钢筋受锈蚀的影响,体积膨胀,导致混凝土在钢筋长度方向发生胀裂,使结构的刚度降低。锈蚀会对混凝土结构的正常使用造成不可逆转的损害,大量的混凝土结构因锈蚀严重而被迫停止使用,这对社会经济的发展及社会活动的正常运行造成了极大的损失(张誉等,2003)。

    已有的研究成果大部分只考虑了一般静力荷载的作用,对在地震作用下材料劣化结构的研究相对较少,这使得处于地震多发区的在役钢筋混凝土结构存在严重的安全隐患。近年来,抗震工程在巨大的地震灾难推动下不断发展(曲哲等,2009),锈蚀钢筋混凝土构件逐渐受到重视,越来越多的学者对其在地震作用下的力学性能进行了研究,并取得了一定的成果。Berto等(2009)通过研究发现,锈蚀会对钢筋混凝土构件的承载能力和延性造成影响,锈蚀率越大,构件的承载能力和延性越低,当锈蚀达到一定程度时,结构的破坏状态会从塑性破坏转变为脆性破坏;蒋连接等(2011a, 2011b)对钢筋混凝土压弯构件的力学性能进行了反复荷载试验,通过人工改变气候环境的方法,加快了钢筋的锈蚀速率,研究了钢筋锈蚀与混凝土构件刚度退化之间的关系,并以恢复力模型为基础,推导了其中用于计算与钢筋锈蚀率相关的特征参数的公式,建立了在压弯情况下适用于锈蚀钢筋混凝土构件的退化双折线恢复力模型;马颖等(2011)以轴压比和锈蚀率为变量,采用低周反复加载的方式对钢筋混凝土圆柱进行了抗震性能试验,通过研究得到了钢筋锈蚀率、轴压比与屈服荷载及极限荷载间的关系;程玲等(2012)采用Pushover方法对锈蚀钢筋混凝土构件在地震作用下的力学性能和变形性能进行了分析研究,结果表明,锈蚀率会对构件的变形造成一定的影响,锈蚀率越大,变形越大,且变形速率随地震强度的增大而加快;Yalciner等(2012)采用数值分析的方法,评估了锈蚀钢筋混凝土结构的地震易损性;李悦等(2013)利用有限元软件ABAQUS,在考虑不均匀锈蚀的情况下对钢筋混凝土构件进行了模拟,研究了钢筋锈蚀对混凝土内应力发展的影响,并对混凝土主拉应力的分布规律进行了总结;刘婕等(2016)通过改变锈蚀位置和锈蚀率,对一座混凝土连续梁桥桥墩进行了数值模拟分析,结果表明,桥墩的抗弯承载力会随钢筋锈蚀程度的增加而降低,墩底钢筋的局部锈蚀会加剧桥墩的塑性发展,改变桥墩的塑性区位置,而桥墩中部及以上的钢筋的局部锈蚀只有在达到一定程度时才会使塑性区的分布发生改变。

    工程界的研究人员对锈蚀钢筋混凝土构件力学性能的研究多是通过模型试验和理论分析的形式,有限元分析则不多。利用有限元方法模拟锈蚀钢筋混凝土构件的力学性能是试验研究的有效补充,通过有限元模型不仅可以获取试验中难以获得的一些参数,还可以避免试验结果的离散性给后期分析带来的困难(阎红霞等,2010)。在2008年汶川地震中,重灾区钢筋混凝土框架结构的梁柱构件破坏较为普遍,大多数RC框架结构的柱端破坏严重,而梁端基本保持完好,这种“强梁弱柱”的破坏机制在很大程度上影响了结构的整体抗震性能(李小军等,2008闫培雷等,2010)。为此,本文以史庆轩等(2000)的锈蚀钢筋混凝土柱为对象,采用非线性有限元软件ABAQUS,系统地研究了钢筋锈蚀率对钢筋混凝土柱承载力、延性、耗能能力及塑性铰转动能力等力学性能指标的影响,以期为锈蚀钢筋混凝土柱的抗震性能评估及基于性能的钢筋混凝土结构全寿命的抗震设计方法提供参考依据。

    钢筋混凝土结构在受力状态下的应力-应变关系呈现明显的非线性特征,因此,正确的材料本构关系对结构或构件的力学性能分析结果至关重要。本文通过大量试算,给出了所选用的本构模型及相关参数建议值。

    混凝土材料采用ABAQUS有限元软件自带的混凝土损伤塑性模型(CDP模型),该模型将混凝土的非线性行为以各向同性弹性损伤和受拉、受压塑性来模拟,同时考虑了拉压塑性应变导致的弹性刚度退化及反复加卸载过程的刚度恢复,适合模拟混凝土在循环荷载作用下的受力情况。CDP模型中没有混凝土应力-应变关系的具体表达式,需要研究者以输入σc-εcinσt-εtin)正值的形式来定义混凝土单轴受压(受拉)本构模型。经笔者多次试算,发现丁发兴-余志武损伤本构模型(丁发兴等,2008)计算收敛性较好,故选用该本构模型定义混凝土材料。

    此外,CDP模型中的塑性参数还包括膨胀角Ψ、流动势偏心率φ、双轴抗压强度与单轴抗压强度之比fb0/fc0、第二应力不变的拉伸子午线与压缩子午线之比Kc、粘性系数μ、模拟微裂缝张开-闭合行为的刚度恢复系数ωtωc。本文建议上述参数的取值见表 1

    表 1  CDP模型塑性参数取值
    Table 1.  The plastic parameters of the CDP model
    参数 Ψ φ fb0/fc0 Kc μ ωt ωc
    数值 33 0.1 1.16 0.667 0.001 0 0.3
    下载: 导出CSV 
    | 显示表格

    混凝土保护层在钢筋锈蚀的影响下,抗压强度会降低,且其开裂部位与剥落程度不具有规律性,本文采用邢国华等(2014)推荐的简化公式进行计算。

    为了计算简便,建模时对模型进行了合理简化:①由于一般混凝土试验构件的配箍率较低,核心混凝土受到的约束作用较弱,所以建模时忽略了箍筋对核心混凝土的约束作用,并假设内部核心混凝土不受钢筋锈蚀的影响,锈蚀只对保护层有一定的削弱作用;②仅考虑钢筋锈蚀对屈服强度、有效截面面积及与混凝土之间的胶结力的影响;③假设构件内部钢筋的锈蚀程度相同且均匀锈蚀,忽略钢筋的局部非均匀锈蚀。

    钢筋材料采用清华大学开发的PQ-Fiber模型集合中的USTEEL02单轴滞回本构模型(曲哲,2010),该模型是Clough提出的最大点指向型双线性模型的改进形式(图 1),考虑了钢筋屈服后因刚度退化产生的包兴格效应和累积损伤引起的受弯承载力退化,并且在骨架曲线上引入下降段来考虑构件的失效。

    图 1  钢筋本构模型
    Figure 1.  Reinforcement constitutive model

    现有研究结果表明,锈蚀未造成钢筋弹性模量的明显变化,而屈服强度、极限强度、有效截面面积等均呈负方向变化(龙渝川等,2011),故本文在模拟钢筋锈蚀时,仅考虑了钢筋截面面积减小及本构关系的退化,具体计算公式如下:

    $$ \eta = \frac{{d_{\rm{0}}^2 - {d^2}}}{{d_{\rm{0}}^{\rm{2}}}} $$ (1)
    $$ {f_{{\rm{yc}}}} = \frac{{1 - 1.231\eta }}{{1 - \eta }}{f_{{\rm{y0}}}} $$ (2)
    $$ {\varepsilon _{\rm{f}}} = 0.15{\lambda _v}/{\lambda _N} $$ (3)

    式中:η为钢筋截面锈蚀率(%);d0d分别为锈蚀前、后钢筋直径(mm);fy0fyc分别为锈蚀前、后钢筋的屈服强度(MPa);εf为钢筋极限塑性变形率;λv为配箍特征值;λN为轴压比。

    钢筋在锈蚀后,其表面的螺纹会有所损失,粗糙程度降低,导致其与混凝土之间的粘结滑移性能减弱。建模时,通过在混凝土与钢筋的节点重合处设置连接单元来处理二者之间的粘结滑移问题。假定滑移现象仅出现在钢筋纵长度方向,垂直于钢筋纵长度方向的粘结状况良好,即在垂直方向设置2个刚度较大(本文取2×1015)的线性弹簧单元,沿钢筋方向通过修改inp文件添加力-位移的关系(F-D曲线),设置1个非线性弹簧单元,力-位移关系曲线按下式计算:

    $$ \left\{ {\begin{array}{*{20}{c}} {F = \tau \times {A_i}}\\ {{A_i} = {\rm{2 \mathsf{ π} }}Rl} \end{array}} \right. $$ (4)

    式中:τ为粘结滑移剪切应力(N/mm2),锈蚀钢筋剪切应力-位移关系与欧洲规范CEB-FIB1990定义的剪切应力-位移曲线类似(Kivell等,2015),故本文采用CEB-FIB1990推荐的粘结滑移本构关系来定义非线性弹簧单元的剪切应力参数;Ai为单个弹簧单元所对应的接触面面积(m2),如图 2所示;R为钢筋半径(m);l为弹簧单元间距(m)。

    图 2  Ai计算示意图
    Figure 2.  Calculation diagram of Ai

    锈蚀削弱了混凝土与钢筋之间的粘结力,本文通过极限粘结强度降低系数β来考虑锈蚀对两者间粘结滑移关系的影响(Bhargava等,2008):

    $$ {\tau _{\rm{s}}} = \beta {\tau _0} $$ (5)
    $$ \beta = 1.192{{\rm{e}}^{ - 11.7\eta }} $$ (6)

    式中:τ0τs为钢筋锈蚀前、后,钢筋与混凝土之间的剪切应力(N/mm2);β为粘结强度降低系数。

    首先以未锈蚀的钢筋混凝土柱为例进行有限元建模,并用试验数据对其进行验证,以确保模型的准确性;在此基础上,以锈蚀率为变量,对不同的钢筋混凝土柱的力学性能进行模拟分析。

    试验试件选自史庆轩等(2000)的相关研究,编号ZZ-1。试件柱总长1400mm,底端固定,竖向千斤顶加压227.58kN,轴压比约为0.27,水平循环反复荷载通过液压作动器施加在距柱顶100mm处。柱截面尺寸为200mm×200mm,基础梁截面尺寸为250mm×300mm,保护层厚度25mm。混凝土强度等级按C25设计,实测标准立方体抗压强度31.1N/mm2,初始弹性模量约为30GPa,泊松比0.2;纵筋采用Ⅱ级钢筋,实测屈服强度为415.6N/mm2,弹性模量约为200GPa,对称配筋,截面配筋率为1.355%,箍筋采用Ⅰ级钢筋。详细几何参数及截面配筋示意图见图 3

    图 3  试验柱几何参数及截面配筋示意图
    Figure 3.  The geometric parameters and sectional reinforcement diagram of test columns

    采用分离式建模以模拟锈蚀对钢筋混凝土粘结滑移的影响,混凝土材料采用C3D8R单元,钢筋材料采用T3D2单元,连接单元采用SPRING2单元,假设钢筋仅在纵向发生滑移,因此仅在钢筋纵向设置非线性弹簧,在其它2个方向不考虑钢筋的滑移,设置刚度为2×1015N/mm的线性弹簧。建立的有限元分析模型如图 4所示。

    图 4  锈蚀钢筋混凝土柱有限元分析模型
    Figure 4.  Finite element analysis model of corroded reinforced concrete column

    基础梁底端网格采用固定约束,竖向千斤顶的作用通过在柱顶施加227.58kN集中力的方式来模拟,参考点RP1建立在距柱顶100mm处,并与柱顶面建立相互耦合作用,以位移加载的形式在该点施加水平循环往复荷载:按照屈服位移的倍数(Δy、2Δy、3Δy等)每级3次循环加载,当试件的承载力下降至峰值荷载的85%时停止加载。

    对模拟结果进行数据处理得到滞回曲线,其与试验结果的对比如图 5所示,比较可知:二者的发展趋势及形状都较为接近,但模拟得到的屈服荷载和极限荷载均大于试验实测值。对实际钢筋混凝土构件而言,一方面由于外界有害介质侵入混凝土内部钢筋的时间不同,导致内部钢筋产生局部坑蚀,而局部坑蚀会进一步引起应力集中,降低构件承载力;另一方面由于混凝土在大气中CO2的侵蚀下发生碳化而失去强碱性,从而导致钢筋钝化膜破坏并锈蚀,进而引起混凝土构件自身延性降低。由于本文在数值建模过程中未考虑内嵌钢筋不均匀锈蚀及混凝土碳化的不利影响,从而导致模拟计算值大于试验实测值。

    图 5  滞回曲线对比图
    Figure 5.  The comparison of hysteresis curve

    表 2列举出构件承载力、变形性能相关指标试验值与模拟值的对比情况。由图 5表 2对比结果可见,本文采用的模拟方法对于各关键点力学参数的计算效果较好,误差均小于10%,但对于构件卸载后再加载位移的模拟与试验结果相差较大,这是模型中需要改进的地方。综合分析,本文所述建模方法对于模拟反复荷载作用下锈蚀钢筋混凝土柱的响应具有一定的准确性,可通过此方法分析不同锈蚀情况对构件力学性能的影响趋势。

    表 2  承载力、变形参数试验值与模拟值对比
    Table 2.  Comparison of bearing capacity and deformation parameters between numerical simulation and physical test
    开裂荷载/kN 屈服荷载/kN 极限荷载/kN 延性比 侧移角/rad
    试验实测 20.00 41.78 50.15 4.46 0.038
    有限元计算 20.47 43.41 53.85 4.75 0.041
    相对误差/% 2.35 3.90 7.38 6.56 7.89
    下载: 导出CSV 
    | 显示表格

    滞回曲线中的每1个滞回环面积代表构件受循环往复荷载1次所消耗的能量,是反映构件抗震性能的重要指标,提取试验数据与模拟结果中每1级位移循环所围成的面积进行计算,如表 3所示,相对误差计算公式为:(模拟值-试验值)/试验值。对比构件每1圈能量偏差发现绝大部分相对误差在10%左右,说明本文建立的有限元模型是合理可靠的,可在该模型基础上进行不同锈蚀程度构件的力学性能分析。

    表 3  滞回环能量试验值与模拟值对比
    Table 3.  Comparison of hysteresis loop energy between numerical simulation and physical test
    循环次数 试验值/kN·mm 模拟值/kN·mm 相对误差/%
    1st 201.45 178.19 -11.54
    2nd 590.07 463.68 -21.42
    3rd 730.58 710.88 -2.69
    4th 828.98 951.38 14.76
    5th 1187.56 1270.92 7.02
    6th 1929.19 1936.33 0.37
    7th 2258.10 2332.90 3.31
    8th 2825.36 3000.31 6.19
    下载: 导出CSV 
    | 显示表格

    框架柱的破坏模式如图 6所示,可以看出最终的破坏主要表现为柱底混凝土被压碎,钢筋外鼓屈服,呈灯笼状。文中对框架柱在循环往复荷载作用下的数值模拟结果较好地反映了框架柱在实际地震中的破坏特征。

    图 6  框架柱在循环荷载作用下的最终变形
    Figure 6.  Final deformation of frame columns under cyclic loading

    本节以锈蚀率为变量进行建模分析,研究钢筋锈蚀程度对框架柱力学性能的影响,具体考虑5种锈蚀工况:0%(未锈蚀)、5%(轻度锈蚀)、10%(中度锈蚀)、15%和20%(严重锈蚀)。各工况对应的锈蚀钢筋计算参数见表 4

    表 4  锈蚀钢筋计算参数
    Table 4.  Calculation parameters of corroded steel bars
    钢筋截面锈蚀率/% 钢筋直径/mm 屈服强度/Mpa 极限塑性变形率/% 粘结强度降低系数
    0 14.00 415.60 10.44 1
    5 13.64 410.55 9.80 0.664
    10 13.28 404.93 9.16 0.369
    15 12.91 398.66 8.52 0.206
    20 12.52 391.60 7.87 0.115
    下载: 导出CSV 
    | 显示表格

    图 7为各锈蚀构件的滞回曲线。随着钢筋锈蚀率增大,构件滞回环逐渐内缩、包络面积减小,“捏拢”现象严重,滞回曲线由“弓形”逐渐发展成“反S形”,说明未锈蚀构件(0%)和轻度锈蚀构件(5%)的粘结滑移只发生了轻微退化,整体构件的塑性变形能力仍然较强,构件在地震作用下仍具有较好的耗能能力,表现出延性破坏的特征;中度锈蚀构件(10%),特别是严重锈蚀构件(15%、20%)的粘结滑移退化严重,承载力明显降低,在达到极限荷载后刚度迅速下降,循环加载次数较未锈蚀构件减少,构件在地震作用下的耗能能力减弱,表现出脆性破坏的特征。

    图 7  不同锈蚀率框架柱的滞回曲线
    Figure 7.  Hysteretic curves of frame columns with different corrosion rates

    各构件的骨架曲线如图 8所示。从图中可以看出,混凝土开裂前,构件的受力性能基本与未锈蚀构件相同;混凝土开裂后,构件的力学性能(屈服荷载、屈服位移、极限荷载及极限位移)随着钢筋锈蚀率增大明显降低,刚度退化程度随锈蚀率的增大明显加剧。对于未锈蚀构件(0%)和轻度锈蚀构件(5%),在达到极限荷载后有较长的稳定发展阶段,表明构件延性良好;中度锈蚀构件(10%)和严重锈蚀构件(15%、20%)平直段较短或者基本上没有平直段,构件延性较差,脆性特征更为明显。

    图 8  不同锈蚀率框架柱的骨架曲线
    Figure 8.  Skeleton curves of frame columns with different corrosion rates

    对于钢筋混凝土柱,常采用位移延性系数和极限弹塑性位移角作为评价构件非弹性变形能力的指标。其中,位移延性系数是指构件极限位移与屈服位移的比值,即μΔu/Δy;极限弹塑性位移角是指构件极限位移与构件高度的比值,即θuΔu/HH为构件高度(mm)。本文Δy根据能量等值法取值(mm),Δu的取值为峰值荷载下降至85%时对应的位移值(mm),由于锈蚀率为20%的构件在模拟过程中表现出脆性破坏的特征,Δu的取值为构件破坏时对应的位移值。图 910分别给出了试件位移延性系数和极限弹塑性位移角与锈蚀率η的关系。

    图 9  位移延性系数与锈蚀率关系曲线
    Figure 9.  Relation between displacement ductility coefficient and corrosion rate
    图 10  极限弹塑性位移角与锈蚀率关系曲线
    Figure 10.  Relation between ultimate elastoplastic displacement angle and corrosion rate

    图 910可以看出,随着钢筋锈蚀率的增大,构件的位移延性系数和极限弹塑性位移角均逐渐降低,充分说明了钢筋锈蚀对构件的变形能力具有较大的削弱作用,锈蚀程度越大,削弱作用越大。因此,在工程设计中进行变形验算时,钢筋锈蚀的影响应给予考虑。

    框架柱在反复荷载作用下,1个循环中所消耗的能量在数值上等于滞回环所包围的面积。为了比较不同锈蚀程度构件屈服后的耗能能力,本文引入平均耗能系数的概念,即μeE/mEy,其中E为构件屈服后各次循环的耗能总和(kN·mm),m为构件屈服后的循环次数,Ey为名义弹性耗能(kN·mm),EyPyΔyPyΔy分别为构件的屈服荷载(kN)和屈服位移(mm)。图 11给出了试件平均耗能系数与锈蚀率η的关系。

    图 11  平均耗能系数与锈蚀率关系曲线
    Figure 11.  Relation between average energy dissipation coefficient and corrosion rate

    图 11可以看出,平均耗能系数随钢筋锈蚀程度的加剧而降低。钢筋轻度锈蚀或中度锈蚀时,构件的耗能能力虽有降低但不显著,二者的平均耗能系数仅比未锈蚀构件下降了3.75%和5.57%;当钢筋发生严重锈蚀时,构件的耗能能力明显退化,其平均耗能系数较未锈蚀构件下降了30%左右。

    塑性铰转动能力是表征钢筋混凝土柱塑性变形能力的参数,一般认为框架柱的总变形由构件屈服前的弹性变形和屈服后的塑性变形组成,因此,用构件达到极限位移时的相对转角与屈服时的相对转角之差来定义塑性铰的转动能力,即θp=arctan(Δp/H),其中Δp为构件的塑性变形(mm),H为构件高度(mm)。由于构件塑性变形与构件高度的比值通常较小,因此塑性铰转动能力可近似表示为θp=(Δu-Δy)/H

    图 12给出了试件塑性铰转动能力随锈蚀率η变化的情况。由图可知,钢筋混凝土柱的塑性铰转动能力随着钢筋锈蚀程度的加剧而减小,因此构件在反复荷载作用下的内力重分布过程逐渐削弱,破坏形式逐渐向脆性破坏发展。

    图 12  塑性铰转动能力与锈蚀率关系曲线
    Figure 12.  Relation between plastic hinge rotation capacity and corrosion rate

    本文采用有限元软件ABAQUS,以锈蚀率(未锈蚀0%、轻度锈蚀5%、中度锈蚀10%和严重锈蚀15%、20%)为变量,对钢筋混凝土柱的力学性能进行了分析研究,得到主要结论如下:

    (1)模拟分析得到的锈蚀钢筋混凝土柱的强度、变形和耗能与试验结果吻合较好,破坏变形与实际混凝土柱的破坏特征较为一致,说明建立的有限元模型可用于锈蚀钢筋混凝土柱的力学性能分析。

    (2)钢筋轻微锈蚀时,构件的破坏形式和滞回性能等基本与未锈蚀构件相同;当钢筋锈蚀程度达到中度锈蚀后,构件的耗能能力随钢筋锈蚀率的增大而减小,“捏拢”现象逐渐严重,滞回曲线由“弓形”逐渐发展成“反S形”,锈蚀引起的钢筋与混凝土之间粘结滑移退化对构件滞回性能的影响显著,破坏形式趋于脆性破坏。

    (3)混凝土开裂前,锈蚀构件的力学性能基本与未锈蚀构件相同;混凝土开裂后,构件的承载力、屈服荷载、极限位移、延性等均随锈蚀率的增大而逐渐降低,脆性破坏特征更为明显。

    (4)钢筋混凝土柱的延性、耗能能力及塑性铰转动能力受钢筋锈蚀率的影响较为明显。当钢筋属于轻中度锈蚀时,位移延性系数、平均耗能系数等指标与未锈蚀构件相差不大;当钢筋属于严重锈蚀时,位移延性系数、平均耗能系数等指标明显下降。

    (5)总体上看,钢筋的锈蚀对构件的承载力、屈服强度、刚度、延性、耗能能力等均有一定的削弱作用,破坏形式由延性破坏逐渐向脆性破坏转变,不利于构件消耗地震能量。

  • 图  1  区域构造单元划分简图

    Figure  1.  Schematic diagram of the division of regional tectonic units

    图  2  研究区实际材料图

    Figure  2.  The actual material map of the study area

    图  3  西段深地震层析剖面解译图

    Figure  3.  Interpretation map of deep seismic tomography profile in the western segment

    图  4  八一水库溢洪道地质剖面(刘尧兴等,2001

    Figure  4.  The geological profile of the spillway of Bayi reservoir(Liu et al, 2001

    图  5  盘谷寺-新乡断裂中段地震剖面立体展示

    Figure  5.  Stereoscopic display of seismic profile in the middle section of Pangusi-Xinxiang fault

    图  6  盘谷寺-新乡断裂中段典型地震剖面(PL2)

    Figure  6.  Typical seismic profile of the middle section of the Pangusi-Xinxiang fault(PL2)

    图  7  盘谷寺-新乡断裂东段浅层地震剖面立体展示

    Figure  7.  Stereoscopic display of seismic profile in the eastern segment of Pangusi-Xinxiang faultult

    图  8  盘谷寺-新乡断裂东段典型地震剖面(PL7)

    Figure  8.  Typical seismic profile of the eastern segment of the Pangusi-Xinxiang fault(PL7)

    图  9  盘谷寺-新乡断裂东段典型地震剖面(PL11)

    Figure  9.  Typical seismic profile of the eastern segment of the Pangusi-Xinxiang fault(PL11)

    图  10  盘谷寺-新乡断裂东段典型地震剖面(PL14)

    Figure  10.  Typical seismic profile of the eastern segment of the Pangusi-Xinxiang fault(PL14)

    图  11  ZK3垂直地震测深(VSP)测井解译

    Figure  11.  ZK3 VSP logging interpretation

    表  1  收集地震测线断层参数

    Table  1.   Collected seismic line fault parameters

    测线名称推测上断点埋深/m上断点断距/m倾向推测最新
    活动时代
    PL165~703~5S晚更新世早期
    PL265~703~5S晚更新世早期
    PL365~704~6S晚更新世早期
    PL460~654~6S晚更新世早期
    PL5100~1104~6N中更新世
    PL672~775~7N晚更新世早期
    PL7约71约11N晚更新世早期
    PL8约80约2N晚更新世早期
    PL9约64约18N晚更新世早期
    PL10约69约20N晚更新世早期
    PL11约68约15N晚更新世早期
    PL12约140约8N中更新世
    PL13190~200陡直N早更新世
    PL14190~200陡直N早更新世
    下载: 导出CSV

    表  2  3个地质标准孔地层划分深度与厚度数据表

    Table  2.   Data sheet of ground layer division depth and thickness of three geological standard holes

    地层单位代号ZK1ZK2ZK3
    深度/m厚度/m深度/m厚度/m深度/m厚度/m
    全新统Qh4.484.486.156.1515.3015.30
    上更新统$\rm Q_P^3 $67.5063.0263.4057.2581.0565.75
    中更新统$\rm Q_P^2 $162.48 (未揭穿)94.98175.27111.87166.5585.50
    下更新统$\rm Q_P^1 $未出露195.65 (未揭穿)
    上新统N2200.57(未揭穿)
    下载: 导出CSV
  • [1] 邓起东, 范福田, 1980. 华北断块新生代、现代地质构造特征. 见: 中国科学院地质研究所, 国家地震局地质研究所主编, 华北断块区的形成与发展. 北京: 科学出版社.
    [2] 邓起东, 朱艾斓, 高翔, 2014. 再议走滑断裂与地震孕育和发生条件. 地震地质, 36(3): 562—573 doi: 10.3969/j.issn.0253-4967.2014.03.002

    Deng Q. D. , Zhu A. L. , Gao X. , 2014. Re-evaluation of seismogenic and occurrence conditions of large earthquakes on strike-slip faults. Seismology and Geology, 36(3): 562—573. (in Chinese) doi: 10.3969/j.issn.0253-4967.2014.03.002
    [3] 邓小娟, 袁洪克, 石金虎等, 2018. 盘谷寺-新乡断裂倾向反转成因探讨. 大地测量与地球动力学, 38(11): 1117—1121, 1148 doi: 10.14075/j.jgg.2018.11.004

    Deng X. J. , Yuan H. K. , Shi J. H. , et al. , 2018. Study on the tendency inversion genesis of Pangusi-Xinxiang fault. Journal of Geodesy and Geodynamics, 38(11): 1117—1121, 1148. (in Chinese) doi: 10.14075/j.jgg.2018.11.004
    [4] 荆智国, 刘尧兴, 2000. 太行山东南麓断裂第四纪水平活动的地质地貌特征. 山西地震, (2): 13—17

    Jing Z. G. , Liu Y. X. , 2000. Geological and geomorphologic characteristics of the horizontal movements in quaternary period of south-eastern Taihang mountain faults. Earthquake Research In Shanxi, (2): 13—17. (in Chinese)
    [5] 刘尧兴, 周庆, 荆智国, 2001. 豫北地区新构造活动特征及中长期地震预测研究. 西安: 西安地图出版社.
    [6] 张培震, 1999. 中国大陆岩石圈最新构造变动与地震灾害. 第四纪研究, (5): 404—413 doi: 10.3321/j.issn:1001-7410.1999.05.003

    Zhang P. Z. , 1999. Late quaternary tectonic deformation and earthquake hazard in continental China. Quaternary Sciences, (5): 404—413. (in Chinese) doi: 10.3321/j.issn:1001-7410.1999.05.003
    [7] 张扬, 贺承广, 鲁人齐等, 2021. 新乡—商丘断裂延津段活动特征与晚第四纪地层沉积关系研究. 地质论评, 67(S1): 11—14

    Zhang Y. , He C. G. , Lu R. Q. , et al. , 2021. Relationship of the activity characteristics in the Yanjin segment of the Xinxiang-Shangqiu fault and the Late-quaternary stratigraphic sedimentary. Geological Review, 67(S1): 11—14. (in Chinese)
    [8] 张岳桥, 马寅生, 杨农, 2003a. 太行山南缘断裂带新构造活动及其区域运动学意义. 地震地质, 25(2): 169—182

    Zhang Y. Q. , Ma Y. S. , Yang N. , 2003a. Neotectonic activity of the southern marginal fault zone of the Taihangshan mountains and its regional kinematic implications. Seismology and Geology, 25(2): 169—182. (in Chinese)
    [9] 张岳桥, 杨农, 马寅生, 2003b. 太行山隆起南段新构造变形过程研究. 地质力学学报, 9(4): 313—329

    Zhang Y. Q. , Yang N. , Ma Y. S. , 2003b. Neotectonics in the southern part of the Taihang uplift, North China. Journal of Geomechanics, 9(4): 313—329. (in Chinese)
  • 期刊类型引用(1)

    1. 盖海龙,姚生海,殷翔,苏旭,刘炜. 柴达木块体内部都兰南断裂晚第四纪活动特征. 震灾防御技术. 2023(02): 261-273 . 本站查看

    其他类型引用(3)

  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  78
  • PDF下载量:  86
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-02-24
  • 刊出日期:  2022-06-30

目录

/

返回文章
返回