Characteristics of Quaternary Activity in the Yongcheng Segment of the Xinxiang-Shangqiu Fault
-
摘要: 新乡-商丘断裂是河南省中北部一条规模较大、切割较深的区域性隐伏断裂,为查明新乡-商丘断裂永城段的浅部构造特征和上断点最新活动时代,在永城段开展浅层人工地震勘探工作,获得2条高分辨率、高信噪比的地震反射剖面,通过地震勘探和钻孔联合剖面探测,并结合区域地质资料对新乡-商丘断裂永城段的上断点位置及活动性进行研究,揭示本断裂上断点进入了第四系上更新统底界,推测其最新活动时代为晚更新世早、中期,是一条隐伏活动断裂。Abstract: The Xinxiang-Shangqiu fault is a large-scale and deep-cut regional concealed fault in the central and northern part of Henan Province. In order to find out the shallow structure features of the Yongcheng segment of the Xinxiang-Shangqiu fault and the latest active age of the upper breakpoint, two shallow artificial seismic surveys were carried out in the Yongcheng segment and two seismic reflection profiles with high- resolution and high signal-to-noise ratio were obtained, this paper studies the location and activity of the upper breakpoint of the Yongcheng segment of the Xinxiang-Shangqiu fault by combining seismic exploration, borehole survey and regional geological data, and reveals that the upper breakpoint of this fault has entered the bottom boundary of the upper Pleistocene quaternary, it is speculated that the latest active age is early and middle Late Pleistocene, and it is a buried active fault.
-
表 1 太平庄钻孔联合剖面年龄样品测试结果
Table 1. Age sample test results of Taipingzhuang borehole joint profile
钻孔编号 样品埋深/m 地层/标志层 所处构造位置 测试类型 距今年龄/ka ZKT02ESRL01 40.62 层⑤ 上覆地层 ESR 186±18 ZKT02ESRL02 50.27 层④ 断层下盘 ESR 359±41 ZKT02ESRL03 80.21 层② 断层下盘 ESR 308±62 ZKT02ESRL04 81.80 层① 断层下盘 ESR 350±68 ZKT02ESRL05 89.36 层① 断层下盘 ESR 335±67 ZKT03OSL05 34.57 层⑤/B7 上覆地层 OSL 75.29±5.32 ZKT07OSL3 39.18 层⑤/B7 上覆地层 OSL 84.06±8.39 ZKT07OSL4 50.57 层④ 断层上盘 OSL 140.83±8.59 ZKT07ESR01 69.36 层② 断层下盘 ESR 250±38 表 2 太平庄剖面第四纪不同时期断层垂直位移及平均滑动速率
Table 2. Fault vertical displacement and average slip rate of Taipingzhuang profile in different quaternary period
层段 沉积年龄/ka BP 各时段垂直位移/m 平均滑动速率
/mm·a−1地质年代 B6顶面之上 98.7 0 0 晚更新世早中期以来 B6顶~B6底 98.7~102.3 0.49 0.136 晚更新世早中期 B6底~B5底 102.3~127.3 0.04 0.002 晚更新世早期 B5底~B4顶 127.3~145.8 0.12 0.006 中更新世末 B4顶~B1底 145.8~369.3 3.06 0.014 中更新世中、晚期 表 3 班庄钻孔联合剖面年龄样品测试结果表
Table 3. Age sample test results of Banzhuang borehole joint profile
钻孔编号 样品埋深/m 地层/标志层 所处构造位置 测试类型 距今年龄/ka ZKB02ESR02 73.54 层③ 上覆地层 ESR 256.00±31.00 ZKB03OSL02 40.60 层⑤ 断层下盘 OSL 122.76±8.16 ZKB04OSL03 16.61 层⑦/B8 断层下盘 OSL 74.18±4.98 ZKB04OSL06 29.52 层⑥ 断层下盘 OSL 121.76±6.84 ZKB04ESR05 100.89 层② 断层下盘 ESR 719.00±121.00 ZKB05OSL01 6.96 层⑨ 上覆地层 OSL 1.11±0.07 ZKB06ESR01 46.81 层④ 上覆地层 ESR 198.00±39.00 ZKB06ESR02 56.53 层④/B3 断层上盘 ESR 226.00±32.00 ZKB07OSL03 21.39 层⑦ 断层下盘 OSL 118.60±7.39 表 4 班庄剖面第四纪不同时期断层垂直位移及平均滑动速率
Table 4. Vertical displacement and average slip rate of faults in different quaternary periods at Banzhuang section Fault vertical displacement and average slip rate of Banzhuang profile in different Quaternary period
层段 沉积年龄/ka BP 各时段垂直位移/m 平均滑动速率
/mm·a−1地质年代 B8底面之上 75.9 0 0 晚更新世中期以来 B8底~B7顶 75.9~90.2 1.98 0.138 晚更新世早中期 B7顶~B5顶 90.2~134.0 0.07 0.002 晚更新世早期 B5顶~B1底 134.0~738.8 11.89 0.020 中更新世 -
[1] 包乃利, 苏媛媛, 马磊等, 2015. 芒砀山地区地热资源开发条件分析. 工程地球物理学报, 12(1): 45—49 doi: 10.3969/j.issn.1672-7940.2015.01.009Bao N. L. , Su Y. Y. , Ma L. , et al. , 2015. Geothermal resources development condition analysis in Mangdang area. Chinese Journal of Engineering Geophysics, 12(1): 45—49. (in Chinese) doi: 10.3969/j.issn.1672-7940.2015.01.009 [2] 侯江飞, 邢磊, 张扬等, 2021. 新乡—商丘断裂延津段浅部地层结构特征研究. 工程地球物理学报, 18(4): 486—494 doi: 10.3969/j.issn.1672-7940.2021.04.0011Hou J. F. , Xing L. , Zhang Y. , et al. , 2021. The shallow structural characteristics of the Yanjin section of Xinxiang—Shangqiu fault. Chinese Journal of Engineering Geophysics, 18(4): 486—494. (in Chinese) doi: 10.3969/j.issn.1672-7940.2021.04.0011 [3] 李光, 翟洪涛, 李代娣等, 2011. 皖西北及邻区第四系分布与新构造运动特征. 华北地震科学, 29(2): 35—39 doi: 10.3969/j.issn.1003-1375.2011.02.008Li G. , Zhai H. T. , Li D. D. , et al. , 2011. Quaternary system distribution and new tectonic movement characteristics of northwestern Anhui Province and adjacent area. North China Earthquake Sciences, 29(2): 35—39. (in Chinese) doi: 10.3969/j.issn.1003-1375.2011.02.008 [4] 刘保金, 柴炽章, 酆少英等, 2008. 第四纪沉积区断层及其上断点探测的地震方法技术——以银川隐伏活动断层为例. 地球物理学报, 51(5): 1475—1483 doi: 10.3321/j.issn:0001-5733.2008.05.021Liu B. J. , Chai C. Z. , Feng S. Y. , et al. , 2008. Seismic exploration method for buried fault and its up-breakpoint in Quaternary sediment area—An example of Yinchuan buried active fault. Chinese Journal of Geophysics, 51(5): 1475—1483. (in Chinese) doi: 10.3321/j.issn:0001-5733.2008.05.021 [5] 王志铄, 马兴全, 2018. 郑州-开封断裂新生代活动特征. 地震地质, 40(3): 511—522 doi: 10.3969/j.issn.0253-4967.2018.03.001Wang Z. S. , Ma X. Q. , 2018. The activity characteristics of Zhengzhou-Kaifeng fault during kainozoic. Seismology and Geology, 40(3): 511—522. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.03.001 [6] 许立青, 李三忠, 索艳慧等, 2013. 华北地块南部断裂体系新构造活动特征. 地学前缘, 20(4): 75—87Xu L. Q. , Li S. Z. , Suo Y. H. , et al. , 2013. Neotectonic activity and its kinematics of fault system in the south of North China Block. Earth Science Frontiers, 20(4): 75—87. (in Chinese) [7] 徐锡伟, 2006. 活动断层、地震灾害与减灾对策问题. 震灾防御技术, 1(1): 7—14 doi: 10.3969/j.issn.1673-5722.2006.01.002Xu X. W. , 2006. Active faults, associated earthquake disaster distribution and policy for disaster reduction. Technology for Earthquake Disaster Prevention, 1(1): 7—14. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.01.002 [8] 张维, 闫晋龙, 马畅等, 2020. 河南新商断裂对地热资源形成的控制作用及资源潜力分析. 矿产勘查, 11(12): 2647—2652 doi: 10.3969/j.issn.1674-7801.2020.12.009Zhang W. , Yan J. L. , Ma C. , et al. , 2020. Control of Xinshang fault on geothermal resources in Henan Province and its resource potential. Mineral Exploration, 11(12): 2647—2652. (in Chinese) doi: 10.3969/j.issn.1674-7801.2020.12.009 [9] 张扬, 贺承广, 鲁人齐等, 2021. 新乡—商丘断裂延津段活动特征与晚第四纪地层沉积关系研究. 地质评论, 67(S1): 11—14Zhang Y. , He C. G. , Lu R. Q. , et al. , 2021. Relationship of the activity characteristics in the Yanjin segment of the Xinxiang-Shangqiu fault and the Late-quaternary stratigraphic sedimentary. Geological Review, 67(S1): 11—14. (in Chinese) [10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2018. GB/T 36072—2018 活动断层探测. 北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2018. GB/T 36072—2018 Surveying and prospecting of active fault. Beijing: Standards Press of China. (in Chinese)