The Distribution of Active Faults in the Middle and Lower Reaches of the Yellow River and its Influence on the Change of Palaeostream
-
摘要: 黄河流域是我国遭受地震灾害最为严重的流域,近年来探测工作对黄河中下游的活动断层有较多新认识,如构成北华北盆地与南华北盆地新构造分界的新乡-商丘断裂,新发现存在多个晚更新世活动段,具备发生中强级以上地震的可能,对识别沿黄河中下游的地震危险源、提高地震危险性认识有重要影响。本文通过总结近年来活动断层探测的最新进展,分析了沿黄河中下游地区的活动断层分布特征及其可能产生的灾害影响,并提出后续工作规划建议。Abstract: The Yellow River Basin is the one suffered by the most serious earthquake disaster in China. In recent years, a series of researches have been carried out on active faults in the middle and lower reaches of the Yellow River and achieved many new understandings. For example, new studies revealed that the Xinxiang-Shangqiu fault, which represents the neotectonic boundary between the North China Basin and the Suthern North China Basin, has several Late Pleistocene active segments with the possibility of moderately strong earthquake activity. This new opinion is important for understanding the earthquake hazard source and evaluating the earthquake hazard in the middle and lower reaches of the Yellow River. In this paper, according to theses up-to-date research progress, we have determined the distribution of active faults in the middle and lower reaches of the Yellow River, discussed its disaster effects, and proposed suggestions for further work.
-
引言
韧性城乡的关键问题是韧性,与之对应的英文是“Resilience”(汪辉等,2017),最早起源于拉丁语“resilio”,意为“撤回或者取消”,后演化为英语中的“resile”,并沿用至今(Alexander,2013)。随着时代的发展,韧性一词也被广泛应用于各类学科中。社会生态学家将这一概念应用到城市研究中,认为韧性城市必须具备多样性、变化适应性、模块性、创新性、迅捷的反馈能力、社会资本的储备以及生态系统的服务能力(Allan等,2011;邵亦文等,2015;徐江等,2015)。21世纪初,美、日科学家在地震工程学科中引入韧性概念,其主要含义是指城乡遭遇中强地震时基本无破坏;遭遇强烈地震时,破坏很小,在短时间内城乡交通、通讯、供电、供水、房屋居住等基本功能可以恢复,基本没有人员伤亡(Godschalk,2003;Klein等,2003)。要实现韧性城乡的目标,核心是使城乡房屋建筑以及为交通、通讯、供电等系统服务的生命线工程具有很强的抗震能力,通俗地讲,这一目标可概括为“七级不坏,八级不倒”。
全球2个主要地震带(环太平洋地震带和欧亚大陆地震带)共同影响中国,造成中国地震多发且分散,地震伤亡人数占全球的比例超过40%。通过工程措施抗御地震造成的破坏,从而减轻或避免地震造成人员伤亡,与此相关的工作统称为震害防御,这是实现韧性城乡的必由之路。
韧性城乡建设工作的核心内容可以概括为“地下清楚”和“地上结实”,此外还有诸如科普宣传、地震烈度区划图编制、政策法规的制定和贯彻等。其中,“地下清楚”的内容包括深入地壳内部的活断层探测、城市范围的地震小区划、工程建设场地地震安全性评价和工程场地地质灾害评价等。“地上结实”的含义指采用不同建筑材料和不同结构形式的房屋、桥梁、大坝等工程结构在遭遇强烈地震作用时不倒塌,从而避免人员伤亡。
1. 中国地震灾害特点
中国幅员辽阔,地震多发且分散,历史上经济欠发达,多数房屋结构缺少基本的抗震能力,因而中国震害呈现小震成灾、大震巨灾的特点。通过对1900年以来的破坏性地震及其灾害数据进行汇总统计,将世界上各主要多震国家的震害进行比较,结果如图 1所示。其中,每个国家的震亡比是以百年来造成人员死亡的各次地震的震级总和做分母,以所造成的人员死亡数量总和做分子,计算出的1个无量纲数。震亡比大表明该国家震害严重。从图 1可以看出,比中国震害更严重的国家有海地、巴基斯坦、亚美尼亚、印度尼西亚和伊朗等,中国和印度相当,但尚不如土耳其、墨西哥,也不如美国、日本和新西兰。
图 1还列出了各国的人均GDP,显然GDP越高,抗震能力越强,震害越轻。但可以看出,与人均GDP相比,中国的震亡比偏高,说明中国用于抗震的经费投入比例与先进国家相比低得多。
2. 中国震害原因分析
地震灾害的主要表现是人员伤亡,而造成人员伤亡的直接原因是房屋倒塌(郭迅,2009;2010)。导致房屋倒塌的主要因素有2个方面,其一是客观意义明显的“地质灾害”,比如地震产生的滑坡、崩塌、滚石、砂土液化、断层位错、地表破裂以及范围甚广的强地面运动;其二是主观意义明显的“人为失当”,包括设防水准过低、结构体系选择和结构布置失当、设计规范失误以及建筑选址不当等。诸如滑坡、断层等灾害只能通过合理的选址来避免,减轻地震灾害最主要的手段是减少“人为失当”。上述“人为失当”在建筑结构上的表现可概括为4个方面,即“散”、“脆”、“偏”、“单”。
(1)“散”主要体现在:①纵横墙间连接薄弱,构造柱缺失或不足,圈梁缺失、不足或不封闭;②竖向构件(墙、柱)与水平构件(梁、楼板、檩条等)连接薄弱,构造柱缺失或不足,圈梁缺失、不足或不封闭(图 2);③门窗洞口两侧无构造柱(图 3);④砌体砌筑质量差,砂浆强度不足;⑤横墙间距过大;⑥砌筑纵或横墙长度超过3m而无构造柱;⑦有未经专门抗震设计的圆弧状填充墙(图 4)。
(2)“脆”主要体现在:①承重墙为生土、土坯等脆弱材料(图 5);②承重墙为干砌或泥结红砖;③存在短柱(图 6);④强弯弱剪、弱节点强构件;⑤有构造不良的围墙、连接不牢的吊灯、吊顶、玻璃等。
(3)“偏”主要体现在:①多层底商砌体房屋底层各道纵墙刚度差异超过3倍,易被个个击破(图 7);②多层框架有不当设置的半高填充墙,易因短柱的刚度大、延性差而被个个击破(图 8);③平面布局里出外进,如“L”、“T”、“Y”等形状;④立面布局蜂瓶细腰,层间刚度分布有突变等。
(4)“单”主要体现在:①抗侧防线单一,缺少冗余备份,如易形成层屈服机制的纯框架(图 9);②砌体结构圈梁、构造柱等措施缺失或不足;③窗间墙、窗端墙宽度过小等。
在2008年汶川8.0级地震的极震区(映秀和北川)仍有一批表现相当“顽强”的建筑,通过深入剖析这些“榜样建筑”的构造特点,可以发现它们无一例外很好地遵循经典力学原理,在构造上呈现“整而不散”、“延而不脆”、“匀而不偏”、“冗而不单”。大量细致的实验和理论分析工作揭示了这些经得起8.0级地震考验建筑的秘密,所得到的结果如果得到推广应用,将极大地提升中国整体抗御地震灾害的能力。
自2008年汶川地震后,笔者一直专注于极震区倒塌与不倒塌房屋构造上的差别,通过30余次振动台试验探讨了决定房屋倒塌的关键因素。结果显示,底商多层砌体房屋各道纵墙刚度、抗力均衡、多层框架结构配以适当的落地剪力墙,完全可以抗御8.0级地震而不倒。进而可以设想,对于与Ⅵ、Ⅶ、Ⅷ、Ⅸ度相当的地震动,不必将其作为抗震设防的对象,而把房屋结构自身的“散”、“脆”、“偏”、“单”作为设防的对象而加以克服,就可以实现“七级不坏,八级不倒”。
3. 工程抗震技术发展沿革
1923年,日本关东大地震造成14万人死亡,日本学者总结了这次地震的教训,提出将房屋自重的10%作为水平地震力,通过结构措施加以抗御,诞生了抗震设计的静力法。1933年,美国长滩地震获得了第一条强震记录,美国学者开始考虑地震的动力效应,并提出了“反应谱”的概念。反应谱法将建筑结构视为弹性体,能考虑结构与地震动之间的共振效应,对地震破坏的本质认识更加深入。1956年在旧金山召开了第一届世界地震工程大会,宣示1个与震害防御密切相关的学科——地震工程诞生了。从1964年开始,由于电子计算机技术的发展,专家学者又提出了建筑结构地震响应的时程分析法,这一方法能够考虑结构在强震下的非线性效应,技术进步明显,但因操作复杂而难以大面积推广应用。从1990年开始,美国学者又提出了“性态抗震设计方法”,这一方法区别对待重要性不同的结构在遭遇强震作用时的表现,比如学校和医院等人员密集型场所的公共建筑需要更强的抗震能力,从单纯关注生命安全扩展到减少经济损失。
进入21世纪以来,美国学者提出了韧性(Resilience)建筑的设计理念,基本涵义是考虑未来地震动极大的不确定性,通过设置多道防线,保证结构遭遇超设防地震时不致倒塌,由这样建筑构成的城市具有很强抗御地震打击的能力。
就中国而言,从1952年开始制定国家十二年科学发展规划时就列入了与震害防御相关的课题,如中国地震烈度表和中国地震烈度区划图、结构地震反应线性分析、建筑物动力特性测试、小比例结构模型动力实验、抗震设计草案编制、强震仪研制和布设等。由刘恢先主编的第1本抗震设计规范(草案)于1964年颁布,1978年颁布了正式版,即《工业与民用建筑抗震设计规范》。这2本规范均以反应谱理论作基础,考虑了场地条件的影响,强调构造措施的必要性。1966—1976年是中国灾难深重的10年,先后经历了1966年邢台地震、1970年通海地震、1975年海城地震、1976年松潘和唐山地震。邢台地震促使地震监测预报队伍的建立和完善;总结通海地震震害经验,提出了震害指数概念及考虑地形影响的方法;1975年海城地震是迄今为止公认为最成功的1次预报;1976年唐山地震的调查及深入研究,明确了圈梁、构造柱等构造措施的作用并写入规范,这一措施至今在中国乃至全世界仍发挥重要作用。
1989年的《建筑抗震设计规范》列入了可靠度理论,假定未来50年超越概率为63%的作为小震,10%的作为中震(设防烈度),2%—3%的作为大震,以小震不坏、中震可修、大震不倒作为结构抗震设计的基本原则,将刘恢先于1975年海城地震和1976年唐山地震总结的抗震设计基本原则以概率形式重新表达。但是可靠度理论的列入,并没有对应物理机制的改变,得到的计算方法比以前复杂得多,很多设计人员难以理解,只能以配套软件计算结果为主,缺乏概念的判断,使结构抗震设计陷入盲目。
自1976年唐山地震后,中国大震沉寂了多年,但2008年汶川8.0级地震造成8.9万同胞遇难,随后2010年和2013年又分别发生了玉树地震和芦山地震。详细考察表明,中国总体上建筑抗震能力是薄弱的,并且建筑结构地震破坏的状态与设计规范的预期有明显差异。以常见的钢筋混凝土框架结构为例,规范中以“层屈服机制”作为抗倒塌设计依据,在具体设计中人为实现“强柱弱梁”,然而震后从未发现过“强柱弱梁”,这表明规范所依据的结构倒塌机理与实际并不相符(郭迅,2018)。对于多层砌体及底商多层砌体等结构,建议的偏心扭转内力重分配、墙段平面内抗剪验算等理论和方法都与实际震害有很大差距。
另一方面,近年来的几次大地震中,即使是极震区,仍然有若干普通材料建造的多层砌体、多层框架等结构表现良好,堪称奇迹。深刻剖析表明,这些可以称之为“榜样建筑”(如紧邻断层的白鹿中学等)的结构都经受住了地面运动强度1.0g的考验。这就提示我们需要对现行规范按照Ⅶ度或Ⅷ度进行抗震分析、验算的做法进行反思。规范所期望出现的震害现象没见到,规范未预料到的超强抗震表现却屡见不鲜。事实表明,现行规范对中国常见建筑结构的地震倒塌机理的认识还不够完善,技术供给与现实需求有巨大差距。震害防御工作的重点就是要缩小这一差距,这是减轻未来地震人员伤亡的根本途径。
4. 工程抗震新技术
由于地震是罕遇事件,如果把地震荷载等同于重力荷载来对待是不科学的。为此,工程界提出2种实用的抗震新技术,分别是隔震技术和消能减震技术。
(1) 隔震技术
地震引起地面往复运动,使得地面上房屋以及各种工程结构受到一定的惯性力,当惯性力超过了结构自身抗力,则结构将出现破坏。这就是大地震造成房屋破坏、桥梁塌落以及其它诸多工程设施损毁的原因。
隔震是将工程结构体系与地面分隔开来,并通过1套专门的支座装置与地面相连接,形成1个水平向柔弱层(图 10),以此延长结构的基本振动周期(图 11),避开地震动的卓越周期,减弱地震能量向结构上传输,降低结构的地震反应。由工程经验来看,多层框架结构经隔震以后,自振周期可由原来的0.3—0.5s延长到2.0—3.0s,避开了地震动卓越周期(0.1—0.5s),可将地表传给上部结构的地震作用降低70%左右。19世纪末就有学者和工程技术人员提出了隔震的概念。采用基底隔震技术建造的房屋,能够极大地消除结构与地震动的共振效应,显著降低上部结构的地震反应,从而可以有效地保护结构免遭地震破坏。
目前全世界建造了2万余栋隔震建筑,中国有5000余栋。美国、日本、新西兰等国的上百栋隔震建筑经历了地震考验,表现出卓越的抗震性能。在中国2013年芦山地震中,人民医院因为采用了隔震技术(图 12),不但没有人员伤亡,内部的核磁共振、彩超、X光机等精密医疗设备也没有任何损伤,医院成为震后伤员救治中心(图 13)。
(2) 消能减震技术
消能减振是指在结构中设置阻尼器或阻尼构件,通过改变体系动力特性、吸收耗散振动能量以减小地震反应的技术。在地震往复荷载作用下,结构发生以位移、速度和加速度表示的响应,如果在结构上安装位移驱动或速度驱动的阻尼器,如防屈曲支撑(BRB)、钢滞变阻尼器(图 14)、TMD(Tuned Mass Damper)、TLD(Tuned Liquid Damper)以及各类油阻尼器等,可以增加结构的等效阻尼比(图 15),从而减小结构的地震响应,减轻甚至避免结构的破坏(张敏政,2015)。
5. 当前韧性城乡建设工作的主要抓手
中国城乡建筑抗震能力还较薄弱,与建设小康社会的需求还有很大差距。震害防御工作的目标是全面提升城乡建筑抗震能力,做到中小震无害,大震小害。为此,需客观面对中国城乡建筑中较普遍存在的“散”、“脆”、“偏”、“单”的问题,认真吸取近年来破坏性地震中正反两方面的经验和教训,从技术上实现“整而不散”、“延而不脆”、“匀而不偏”和“冗而不单”。具体措施有以下几个方面:
(1) 技术标准的建立:将最新实用技术(如“散”、“脆”、“偏”、“单”评估法)写入行业标准,以利推广应用。
(2) 技术标准贯彻落实:在城市新建建筑结构的设计施工过程中严格遵循新标准。
(3) 既有建筑的筛查:依据设计标准的技术原理和操作流程,分期分批推进城乡既有建筑抗震缺陷的筛查,依结果提出有针对性的补强措施。
(4) 大力推广减隔震技术的应用。
6. 结论
中国地震灾害形势依然严峻。以韧性城乡为标志的新时期防震减灾目标成为业界共识。韧性城乡的主要特点是城乡、工程结构及构件等各个层次都具有很强的抗震能力,即便地震相当强烈,城乡基本功能也能很快恢复。建设韧性城乡,首先需要对城乡抗震能力的现状进行科学评估。基于震害类比、实验验证和理论分析,总结提炼出的工程结构抗震能力“散、脆、偏、单”评估法是韧性城乡建设的有力工具。对于新建工程,宜大力推广隔震与消能减震新技术。
-
表 1 黄河中下游主要活动断层一览表
Table 1. The list of active faults along middle and lower reaches of the Yellow River
编号 断裂名称 性质 最新活动时代 断裂特征简述 资料来源 F1 鄂尔多斯北缘断裂 隐伏正断 晚更新世 该断裂形成于上新世末,西起磴口,呈近东西走向,向东经达拉特旗延至托克托县,然后逐渐转为NEE向至和林格尔北,与和林格尔断裂交汇,全长360多公里,倾向N(N)W,倾角70°~80°,西段断距较大,达1500~2000 m,向东逐渐减小,断距一般为300~350 m,断裂沿鄂尔多斯台地北缘延伸,向东至托克托隐伏于呼包盆地之中。 邓起东等,1985;
徐锡伟等,2015;
刘华国等,2022F2 韩城断裂 正断 全新世、
晚更新世该断裂是河津拗陷的主要控制构造。断裂北起河津西磴口,向西南经禹门口,斜穿韩城市入合阳境内,在义井一带与双泉-临猗断裂相交,总体走向N30°E。其北端在西磴口一带与临汾盆地西界罗云山山前断裂相连。平面上追踪NE和NNE2个方向呈锯齿状延伸,自上新世形成至令,一直持续活动,使上新世至全新世各个时代的地层发生变形。 申屠炳明等,1990;
扈桂让等,2017,2018F3 峨嵋台地北缘断裂 正断 全新世、
晚更新世该断裂展布于峨嵋台地北缘与临汾盆地南侧之间,总体走向NEE—NE,全长约120 km,在谭家庄及南柳2处存在明显的阶区,将断层分为3段。谭家庄以西断裂总体走向近EW,在中更新世早期有过活动;谭家庄至南柳段断层总体走向近EW,为全新世活动断层;郑柴至西彰坡段断层走向转为NE向,沿冯村-南柳台地前缘展布,在晚更新世有过活动,但未发现全新世活动的证据。 徐伟等,2016 F4 双泉-临猗断裂 隐伏正断 晚更新世 该断裂为运城盆地北缘边界,断裂向西经闻喜、临猗至黄河,向南西西方向延伸直抵双泉以西,全长130 km。断裂总体走向NEE,倾向S,地貌上表现为数十至百余米高的陡坡或陡坎。该断裂中更新世活动强烈,晚更新世活动较弱,在地貌上表现为黄土台地南缘陡坎,在临猗一带断距达50 m,错断的最新地层为上更新统上部。 朱瑞静,2019 F5 中条山北麓断裂 正断 全新世 该断裂以西姚温和磨河村附近的断裂走向为转折点,断裂分为3段,自西南向东北分别为韩阳段、解州段和夏县段。韩阳段断裂走向N30°E,长约20 km,由多条次级断层左阶斜列组成。解州段自西姚温至磨河口,中条山北麓断裂总体走向N70°E,长度约80 km。夏县段南起磨河口,北抵酒务头南,走向N35°E,长40 km,北端尖灭于与鸣条岗的交界地带。3段断裂均有全新世活动迹象,韩阳段在西姚温错断了全新世埋藏土,解州段多处见断层错断全新世埋藏土和含文化层的砾石层,夏县段错断东周时期墓穴地面。 程绍平等,2002;
郭春杉等,2019;
田建梅等,2013;
司苏沛等,2014;
王怡然等,2015F6 华山山前断裂 正断 全新世 该断裂是渭河盆地南界断裂,东起灵宝,经潼关,止于华县石堤峪口,全长约104 km。断裂走向多变,总体为近东西向,呈舒缓波状,倾向北,倾角40º~80º。在断裂上升盘,发育数米至百米宽的挤压破碎带,断裂下降盘的古近系和新近系及第四系厚度一般为1000~2000 m,沿断裂山体同黄土塬直接接触。 张安良等,1989;
徐伟等,2017F7 温塘断裂 正断 晚更新世、
早中更新世该断裂南起灵宝县朱阳镇,向北东方向沿盆山边界延伸,经五亩乡项城村、胡家村、留村、川口乡下坡头村、朱家窝,延伸至三门峡市原店镇温塘村,断层在三门峡市区则隐伏于第四纪沉积物之下,于高庙乡棉凹村等地再次出露,断裂全长80 km。 刘尧兴等,2004;
乔龙等,2022F8 盘谷寺-新乡断裂 隐伏正断 晚更新世,
早中更新世该断裂以柏山、高村为界,分为西、中、东3段。其中西段最新活动时代为中更新世,具有向盆地迁移发育的特征;中段最新活动时代为晚更新世早期;东段最新活动时代为晚更新世早期且向两端活动性逐渐降低。 李爽,2016;
郁军建等,2022F9 汤东断裂 隐伏正断 晚更新世 该断裂位于太行山东南麓,为汤阴地堑和内黄隆起的边界断裂。断裂位于汤阴地堑东侧,长约100 km,走向N30°E,倾向NW,陡倾角,正断为主,为隐伏断裂。 韩慕康等,1980;
刘保金等,2012;
彭白等,2022F10 新乡-商丘断裂 隐伏正断 晚更新世、
早中更新世该断裂西起焦作,向东南经新乡、兰考,过黄河向商丘一带延伸,总体为近NWW向展布,长约250 km。它是南华北盆地与渤海湾盆地和鲁西隆起的分界线,断裂以北构造线主要为NE、NNE向,以南以NWW、NEE向为主。断裂倾角较大,在新乡-封丘段倾向NE、封丘-兰考段倾向SW、商丘段倾向NE,具有明显的分段性,表明断层具有走滑性质。 侯江飞等,2021;
张扬等,2021;
张扬等,2022;
赵显刚等,2022F11 开封断裂 隐伏正断 晚更新世、
早中更新世该断裂是一条控制开封凹陷南边界的区域性深大断裂,由多期活动构造叠加而成,控制着区域沉积作用和断块的发育演化。断裂西起郑州,向东经中牟县、杏花营、开封县,与新乡-商丘断裂相交,断裂走向近EW向,倾向N,倾角由浅部向深部逐渐变缓,为铲式正断层。该断裂由多条近东西向次级断裂构成,由西向东依次可划分为上街断裂、须水断裂、中牟断裂、中牟北断裂和开封断裂。 徐锡伟等,2015;
王志铄等,2018;
孙杰等,2022F12 聊城-兰考断裂 隐伏正断 全新世、
晚更新世该断裂起于兰考县,向北经范县、聊城至韩屯转向北东,全长约360 km。断裂走向20°~30°,倾向北西,倾角50°~70°,为一上陡下缓的铲形正断层。1937年该断裂附近发生菏泽7级地震。该断裂在中生代以来华北断块分异的基础上发展而来,第四纪以来的南段活动最强,中段活动次之,北段活动最弱。断层上断点最小埋深20~30 m,早中更新世和晚更新世以来的活动速率分别为0.04、0.19 mm/a,平均值为0.12 mm/a,全新世中期以来断层垂直差异活动已不明显。 向宏发等,2000;
孙杰等,2020;
李涛等,2022F13 东明-成武断裂 隐伏正断 晚更新世 该断裂发育于鲁西隆起西缘,走向NWW,倾向NNE,全长95 km,为左旋正断层。从航磁异常图可见菏泽—定陶分布着一串 NW向的强磁性体,并在菏泽以西与聊城-兰考断裂相交。该断裂西段钻孔结合地貌结果表明,断裂既控制着新生代沉积,又控制着该地区的地震活动。 张群伟等,2019 F14 无棣-益都断裂 隐伏正断 晚更新世 该断裂是一条规模较大的断裂,走向NW,倾向NE东,全长240 km。该断裂被广饶-齐河断裂、上五井断裂和沂沭断裂所切割,分为3段,使断裂的活动具有分段特征,断裂对济阳坳陷内部的沉积环境有东西分割作用,最新活动时代为晚更新世。 王华林等,1989 F15 埕南断裂 隐伏正断 晚更新世 该断裂是济阳坳陷与埕宁隆起的分界断裂,形成于印支运动时期,从中生代早期至第四纪持续活动,断裂落差变化大,产状变化快,是典型的多期构造应力共同作用下形成的多期、多段式断裂,平面上埕南断裂走向分为若干段,分别是NWW向及近EW向的西段,近NE向的中断,和NW向的东段,各段构造样式及活动性变化均有不同,东段活动性弱于西段和中段。 孙波等,2020;
鹿子林等,2022 -
[1] 程绍平, 杨桂枝, 2002. 山西中条山断裂带的晚第四纪分段模型. 地震地质, 24(3): 289—302 doi: 10.3969/j.issn.0253-4967.2002.03.001Cheng S. P. , Yang G. Z. , 2002. Late Quaternary segmentation model of the Zhongtiaoshan Fault, Shanxi province. Seismology and Geology, 24(3): 289—302. (in Chinese) doi: 10.3969/j.issn.0253-4967.2002.03.001 [2] 邓起东, 尤惠川, 1985. 鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制. 见: 国家地震局地质研究所主编, 现代地壳运动研究(1). 北京: 地震出版社, 58—78. [3] 郭春杉, 李文巧, 田勤俭等, 2019. 中条山北麓断裂解州段晚更新世滑动速率研究. 地震, 39(4): 13—26Guo C. S. , Li W. Q. , Tian Q. J. , et al. , 2019. Study on Late Pleistocene sliding rate of Haizhou section of North Zhongtiaoshan faults. Earthquake, 39(4): 13—26. (in Chinese) [4] 韩慕康, 赵景珍, 1980. 河南汤阴地堑的地震地质特征与地震危险性. 地震地质, 2(4): 47—58Han M. K. , Zhao J. Z. , 1980. Seismotectonic characteristics of Tangyin graben, Henan province, and its earthquake risk. Seismology and Geology, 2(4): 47—58. (in Chinese) [5] 侯江飞, 邢磊, 张扬等, 2021. 新乡-商丘断裂延津段浅部地层结构特征研究. 工程地球物理学报, 18(4): 486—494 doi: 10.3969/j.issn.1672-7940.2021.04.0011Hou J. F. , Xing L. , Zhang Y. , et al. , 2021. The shallow structural characteristics of the Yanjin section of Xinxiang-Shangqiu Fault. Chinese Journal of Engineering Geophysics, 18(4): 486—494. (in Chinese) doi: 10.3969/j.issn.1672-7940.2021.04.0011 [6] 扈桂让, 李自红, 闫小兵等, 2017. 韩城断裂晚第四纪活动性研究. 地震地质, 39(1): 206—217 doi: 10.3969/j.issn.0253-4967.2017.01.016Hu G. R. , Li Z. H. , Yan X. B. , et al. , 2017. The study of late Quaternary activity of Hancheng Fault. Seismology and Geology, 39(1): 206—217. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.01.016 [7] 扈桂让, 李自红, 闫小兵等, 2018. 韩城断裂北东段晚更新世以来最新活动研究. 中国地震, 34(3): 580—590 doi: 10.3969/j.issn.1001-4683.2018.03.019Hu G. R. , Li Z. H. , Yan X. B. , et al. , 2018. Study on the latest activity of the northeast section of Hancheng Fault since the Late Pleistocene. Earthquake Research in China, 34(3): 580—590. (in Chinese) doi: 10.3969/j.issn.1001-4683.2018.03.019 [8] 兰恒星, 彭建兵, 祝艳波等, 2022. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学: 地球科学, 52(2): 199—221.Lan H. X. , Peng J. B. , Zhu Y. B. , et al. , 2022. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin. Science China Earth Sciences, 65(2): 234—256. [9] 李爽, 2016. 焦作第四系与盘谷寺-新乡断裂活动性分析. 北京: 中国地质大学(北京).Li S., 2016. Quaternary stratigraphic division and constructive analysis of Pangu Temple-Xinxiang fault activities in Jiaozuo Area. Beijing: China University of Geosciences Beijing. (in Chinese) [10] 李涛, 王志铄, 高家乙等, 2022. 兰聊断裂南段构造样式与最新活动性分析. 震灾防御技术, 17(2): 待刊.Li T., Wang Z. S., Gao J. Y., et al., 2022. Structural style and latest activity analysis of the southern segment of the Lanliao fault. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [11] 刘保金, 何宏林, 石金虎等, 2012. 太行山东缘汤阴地堑地壳结构和活动断裂探测. 地球物理学报, 55(10): 3266—3276 doi: 10.6038/j.issn.0001-5733.2012.10.009Liu B. J. , He H. L. , Shi J. H. , et al. , 2012. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang mountain. Chinese Journal of Geophysics, 55(10): 3266—3276. (in Chinese) doi: 10.6038/j.issn.0001-5733.2012.10.009 [12] 刘华国, 贾启超, 龚飞, 2022. 鄂尔多斯北缘断裂托克托段晚第四纪活动特征. 震灾防御技术, 17(2): 待刊.Liu H. G., Jia Q. C., Gong F., 2022. Late Quaternary activity characteristics of Tuoketuo ection of the Ordos northern fault. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [13] 刘尧兴, 王志铄, 余华等, 2004. 温塘断裂活动性及其发震机制研究. 郑州: 河南省地震局. [14] 鹿子林, 葛孚刚, 薛俊召等, 2022. 滨北地区埕南断层晚更新世活动证据及其地震危险性意义. 震灾防御技术, 17(2): 待刊.Lu Z. L., Ge F. G., Xue J. Z., et al., 2022. Evidence of late pleistocene activity of Chengnan fault in Binbei area and it’s seismic risk significance. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [15] 潘保田, 李吉均, 1996. 青藏高原: 全球气候变化的驱动机与放大器: Ⅲ. 青藏高原隆起对气候变化的影响. 兰州大学学报(自然科学版), 32(1): 108—115Pan B. T. , Li J. J. , 1996 a. Qinghai-Tibetan Plateau: a driver and amplifier of the global climatic change: Ⅲ. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes. Journal of Lanzhou University (Natural Sciences), 32(1): 108—115. (in Chinese) [16] 彭白, 苏鹏, 鲁人齐等, 2022. 浅层人工地震和地质雷达在城市活动断层探测中的联合应用−以鹤壁市汤东断裂为例. 震灾防御技术, 17(2): 待刊.Peng B. , Su P. , Lu R. Q. , et al. , 2022. Combined with shallow seismic exploration and ground penetration radar in urban active fault detection-an example from the Tangdong fault in Hebi, China. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [17] 彭建兵, 马润勇, 卢全中等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457—466 doi: 10.3321/j.issn:1001-8166.2004.03.018Peng J. B. , Ma R. Y. , Lu Q. Z. , et al. , 2004. Geological hazards effects of uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457—466. (in Chinese) doi: 10.3321/j.issn:1001-8166.2004.03.018 [18] 彭建兵, 吴迪, 段钊等, 2016. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理. 西南交通大学学报, 51(5): 971—980 doi: 10.3969/j.issn.0258-2724.2016.05.021Peng J. B. , Wu D. , Duan Z. , et al. , 2016. Disaster characteristics and destructive mechanism of typical loess landslide cases triggered by human engineering activities. Journal of Southwest Jiaotong University, 51(5): 971—980. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.05.021 [19] 彭建兵, 兰恒星, 钱会等, 2020. 宜居黄河科学构想. 工程地质学报, 28(2): 189—201Peng J. B. , Lan H. X. , Qian H. , et al. , 2020. Scientific research framework of livable Yellow River. Journal of Engineering Geology, 28(2): 189—201. (in Chinese) [20] 乔龙, 王磊, 郭长辉等, 2022. 豫西三门峡地区温塘断裂第四纪活动性研究. 震灾防御技术, 17(2): 待刊.Qiao L., Wang L., Guo C. H., et al., 2022. Study on the segmentation and activity in quaternary of the Wentang fault in Sanmenxia area, Western Henan province. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [21] 申屠炳明, 徐煜坚, 汪一鹏, 1990. 韩城断裂的活动特征及断裂带古地震遗迹的初步研究. 华北地震科学, 8(1): 1—10Shentu B. M. , Xu Y. J. , Wang Y. P. , 1990. Preliminary study of the characteristics of the activity of Hancheng Fault and earthquake vestiges near the fault. North China Earthquake Sciences, 8(1): 1—10. (in Chinese) [22] 司苏沛, 李有利, 吕胜华等, 2014. 山西中条山北麓断裂盐池段全新世古地震事件和滑动速率研究. 中国科学: 地球科学, 44(9): 1958—1967.Si S. P., Li Y. L., Lü S. H., et al., 2014. Holocene slip rate and paleoearthquake records of the Salt Lake segment of the Northern Zhongtiaoshan Fault, Shanxi Province. Science China Earth Sciences, 57(9): 2079—2088. [23] 孙波, 刘国宁, 黄秀芹等, 2020. 渤南洼陷北带埕南断裂带构造特征及形成演化. 地球科学前沿, 10(11): 1032—1041 doi: 10.12677/AG.2020.1011102Sun B. , Liu G. N. , Huang X. Q. , et al. , 2020. Structural characteristics, formation and evolution of Chengnan fault zone in the northern belt of Bonan Subsag. Advances in Geosciences, 10(11): 1032—1041. (in Chinese) doi: 10.12677/AG.2020.1011102 [24] 孙杰, 王斐斐, 马兴全等, 2020. 聊城-兰考断裂中段第四纪活动研究. 大地测量与地球动力学, 40(12): 1254—1258Sun J. , Wang F. F. , Ma X. Q. , et al. , 2020. Study on Quaternary activity at the middle part of Liaocheng-Lankao Fault. Journal of Geodesy and Geodynamics, 40(12): 1254—1258. (in Chinese) [25] 孙杰, 张予川, 徐婉君等, 2022. 开封断裂第四纪活动特征. 震灾防御技术, 17(2): 待刊.Sun J., Zhang Y. C., Xu W. J., et al., 2022. Quaternary activity characteristic of the Kaifeng fault. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [26] 田建梅, 李有利, 司苏沛等, 2013. 中条山北麓中段洪积扇上全新世断层陡坎的发现及其新构造意义. 北京大学学报(自然科学版), 49(6): 986—992Tian J. M. , Li Y. L. , Si S. P. , et al. , 2013. Discovery and neotectonic significance of fault scarps on alluvial fans in the middle of northern piedmont of the Zhongtiao Mountains. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 986—992. (in Chinese) [27] 王华林, 崔昭文, 王立军, 1989. 益都断裂、蒙山断裂的新活动. 地震地质, 11(3): 64Wang H. L. , Cui Z. W. , Wang L. J. , 1989. The age of new activity of Yidu and Mengshan faults. Seismology and Geology, 11(3): 64. (in Chinese) [28] 王开拓, 2018. 土石防洪堤运行中的工程风险与处置方法. 中国水能及电气化, (3): 23—26 doi: 10.16617/j.cnki.11-5543/TK.2018.03.07Wang K. T. , 2018. Engineering risk and disposal method in earth and stone floodwall operation. China Water Power & Electrification, (3): 23—26. (in Chinese) doi: 10.16617/j.cnki.11-5543/TK.2018.03.07 [29] 王涌泉, 2007.1855年黄河大改道与百年灾害链. 地学前缘, 14(6): 6—10 doi: 10.3321/j.issn:1005-2321.2007.06.002Wang Y. Q. , 2007. Great change of lower Yellow River channel in 1855 and the disaster chain for 100 years more in the world. Earth Science Frontiers, 14(6): 6—10. (in Chinese) doi: 10.3321/j.issn:1005-2321.2007.06.002 [30] 王怡然, 李有利, 闫冬冬等, 2015. 中条山北麓断裂中南段全新世地震事件的初步研究. 地震地质, 37(1): 1—12 doi: 10.3969/j.issn.0253-4967.2015.01.001Wang Y. R. , Li Y. L. , Yan D. D. , et al. , 2015. Holocene paleoseismology of the middle and south segments of the north Zhongtiaoshan fault zone, Shanxi. Seismology and Geology, 37(1): 1—12. (in Chinese) doi: 10.3969/j.issn.0253-4967.2015.01.001 [31] 王志铄, 马兴全, 2018. 郑州-开封断裂新生代活动特征. 地震地质, 40(3): 511—522 doi: 10.3969/j.issn.0253-4967.2018.03.001Wang Z. S. , Ma X. Q. , 2018. The activity characteristics of Zhengzhou-Kaifeng fault during Kainozoic. Seismology and Geology, 40(3): 511—522. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.03.001 [32] 向宏发, 王学潮, 虢顺民等, 2000. 聊城-兰考隐伏断裂第四纪活动性的综合探测研究. 地震地质, 22(4): 351—359 doi: 10.3969/j.issn.0253-4967.2000.04.003Xiang H. F. , Wang X. C. , Guo S. M. , et al. , 2000. Integrated survey and investigation on the Quaternary activity of the Liaocheng-Lankao buried fault. Seismology and Geology, 22(4): 351—359. (in Chinese) doi: 10.3969/j.issn.0253-4967.2000.04.003 [33] 许立青, 李三忠, 索艳慧等, 2013. 华北地块南部断裂体系新构造活动特征. 地学前缘, 20(4): 75—87Xu L. Q. , Li S. Z. , Suo Y. H. , et al. , 2013. Neotectonic activity and its kinematics of fault system in the south of North China Block. Earth Science Frontiers, 20(4): 75—87. (in Chinese) [34] 徐伟, 高战武, 杨源源, 2016. 山西峨嵋台地北缘断裂全新世古地震研究. 震灾防御技术, 11(3): 435—447 doi: 10.11899/zzfy20160301Xu W. , Gao Z. W. , Yang Y. Y. , 2016. Holocene and paleo earthquakes along the northern marginal fault of emei platform, Shanxi province. Technology for Earthquake Disaster Prevention, 11(3): 435—447. (in Chinese) doi: 10.11899/zzfy20160301 [35] 徐伟, 杨源源, 袁兆德等, 2017. 华山山前断裂断错地貌及晚第四纪活动性. 地震地质, 39(3): 587—604 doi: 10.3969/j.issn.0253-4967.2017.03.011Xu W. , Yang Y. Y. , Yuan Z. D. , et al. , 2017. Late Quaternary faulted landforms and fault activity of the Huashan piedmont fault. Seismology and Geology, 39(3): 587—604. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.03.011 [36] 徐锡伟, 于贵华, 冉勇康等, 2015. 中国城市活动断层概论: 20个城市活动断层探测成果. 北京: 地震出版社, 165—283. [37] 郁军建, 张扬, 孙印等, 2022. 盘谷寺-新乡断裂第四纪活动性分段特征. 震灾防御技术, 17(2): 待刊.Yu J. J., Zhang Y., Sun Y., et al., 2022. Quaternary active segmentation characteristics of the Pangusi-Xinxiang fault. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [38] 张安良, 米丰收, 种瑾, 1989.1556年陕西华县大地震形变遗迹及华山山前断裂古地震研究. 地震地质, 11(3): 73—81Zhang A. L. , Mi F. S. , Chong J. , 1989. Deformation relics of the 1556 Huaxian (Shaanxi, China) great earthquake and the study of palaeoseismicity on the frontal fault zone of the Huashan Mts. Seismology and Geology, 11(3): 73—81. (in Chinese) [39] 张金良, 刘生云, 李超群, 2018. 论黄河下游河道的生态安全屏障作用. 人民黄河, 40(2): 21—24 doi: 10.3969/j.issn.1000-1379.2018.02.005Zhang J. L. , Liu S. Y. , Li C. Q. , 2018. Discussion on effect of ecological security barrier of the lower Yellow River. Yellow River, 40(2): 21—24. (in Chinese) doi: 10.3969/j.issn.1000-1379.2018.02.005 [40] 张群伟, 朱守彪, 2019. 华北地区主要断裂带上的库仑应力变化及地震活动性分析. 地震地质, 41(3): 649—669 doi: 10.3969/j.issn.0253-4967.2019.03.008Zhang Q. W. , Zhu S. B. , 2019. The coulomb stress changes and seismicity on some major faults in North China. Seismology and Geology, 41(3): 649—669. (in Chinese) doi: 10.3969/j.issn.0253-4967.2019.03.008 [41] 张扬, 贺承广, 鲁人齐等, 2021. 新乡-商丘断裂延津段活动特征与晚第四纪地层沉积关系研究. 地质评论, 67(S1): 11—14Zhang Y. , He C. G. , Lu R. Q. , et al. , 2021. Relationship of the activity characteristics in the Yanjin segment of the Xinxiang-Shangqiu fault and the Late-quaternary stratigraphic sedimentary. Geological Review, 67(S1): 11—14. (in Chinese) [42] 张扬, 郭大伟, 张涛等, 2022. 新乡-商丘断裂永城段第四纪活动特征分析. 震灾防御技术, 17(2): 待刊.Zhang Y., Guo D. W., Zhang T., et al., 2022. Characteristics of quaternary activity in the Yongcheng segment of the Xinxiang-Shangqiu fault. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [43] 赵显刚, 李稳, 成万里等, 2022. 新乡-商丘断裂延津至封丘段新构造期构造样式分析. 震灾防御技术, 17(2): 待刊.Zhao X. G., Li W., Cheng W. L., et al., 2022. Analysis of structural style of Yanjin Fengqiu section of Xinxiang Shangqiu fault in neotectonic period. Technology for Earthquake Disaster Prevention, 17(2): To be published. (in Chinese) [44] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2018. GB/T 36072—2018 活动断层探测. 北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2018. GB/T 36072—2018 Surveying and prospecting of active fault. Beijing: Standards Press of China. (in Chinese) [45] 朱瑞静, 2019. 运城盆地地层与构造特征. 内蒙古石油化工, 45(3): 44—47 doi: 10.3969/j.issn.1006-7981.2019.03.015Zhu R. J. , 2019. The stratigraphic and structural characteristics of Yuncheng basin. Inner Mongolia Petrochemical Industry, 45(3): 44—47. (in Chinese) doi: 10.3969/j.issn.1006-7981.2019.03.015 [46] Wang Y. J. , Su Y. J. , 2011. The geo-pattern of course shifts of the Lower Yellow River. Journal of Geographical Sciences, 21(6): 1019—1036. doi: 10.1007/s11442-011-0897-7 期刊类型引用(9)
1. 闫华敏,李磊,李林涛,李彦尊,李玲,张威,彭晨昂. 基于层次分析法和模糊评价法的中国近海盆地CO_2封存适宜性评价. 海洋地质前沿. 2024(01): 79-93 . 百度学术
2. 翟娟,洪德全,朱亮,赵梦强,杨震. 地震活动性多参数方法研究华北地区强震危险性. 华南地震. 2024(01): 63-72 . 百度学术
3. 尚鲁宁,潘军,曹瑞,周青春,孔祥淮. 基于重磁数据研究江苏岸外滨海断裂带及邻区构造特征. 华东地质. 2024(01): 101-114 . 百度学术
4. 宋程,张永仙,夏彩韵,毕金孟,张小涛,吴永加,徐小远. 基于PI方法的华北2019年以来3次M_S≥5.0地震回溯性预测研究. 地震. 2024(02): 120-134 . 百度学术
5. 沙海军,吕悦军,彭艳菊,谢卓娟,修立伟. 渤海及邻区地震活动的周期性特征及其在地震预测中的应用. 中国地震. 2024(04): 868-876 . 百度学术
6. 张延保,马潇,胡峰,翟鸿宇. 海底节点不同震相逆时偏移成像研究. 震灾防御技术. 2023(03): 559-567 . 本站查看
7. 吴果,冉洪流,周庆,谢卓娟. 中国海域及邻区自适应空间平滑地震活动模型. 地震地质. 2022(01): 150-169 . 百度学术
8. 黎明晓,邓世广,马玉川,解孟雨,王月,郭菲. 2021年11月17日江苏大丰海域M_S 5.0地震总结. 地震地磁观测与研究. 2022(04): 148-159 . 百度学术
9. 冯思琦,吴清,沈鎏澄,王惠铎,温家洪. 1990-2015年中国沿海低地地震高危险性地区的人口暴露研究. 震灾防御技术. 2022(04): 719-726 . 本站查看
其他类型引用(0)
-